首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Magnesium and methionine deprivation affect the response of rats to boron deprivation
Authors:Forrest H Nielsen  Terrence R Shuler  Thomas J Zimmerman  Eric O Uthus
Institution:(1) Agricultural Research Service, Grand Forks Human Nutrition Research Center, US Department of Agriculture, 58202 Grand Forks, ND
Abstract:A series of nine experiments were done to obtain further evidence that boron might be involved in major mineral metabolism (Ca, P, and Mg), thus indicating that boron is an essential nutrient for animals. Eight factorially arranged experiments of 6–10 wk durations were done with weanling Sprague-Dawley male rats. One factorially arranged experiment was done with weanling spontaneously hypertensive rats. The variables in each experiment were dietary boron supplements of 0 and 3 μg/g, and dietary magnesium supplements of either 200 (Experiments 1–3) or 100 (Experiments 4–9) and 400 μg/g. In Experiments 7 and 9, a third variable was dietary manganese supplements of 25 and 50 μg/g. Methionine status was varied throughout the series of experiments by supplementing the casein-based diet with methionine and arginine. Findings were obtained indicating that the severity of magnesium deprivation and the methionine status of the rat strongly influence the extent and nature of the interaction between magnesium and boron, and the response to boron deprivation. When magnesium deprivation was severe enough to cause typical signs of deficiency, a significant interaction between boron and magnesium was found. Generally, the interaction was characterized by the deprivation of one of the elements making the deficiency signs of the other more marked. The interaction was most evident when the diet was not supplemented with methionine and especially when the diet contained luxuriant arginine. Signs of boron deprivation were also more marked and consistent when the diet contained marginal methionine and luxuriant arginine. Among the signs of boron deprivation exhibited by rats fed marginal methionine were depressed growth and bone magnesium concentration, and elevated spleen wt/body wt and kidney wt/body wt ratios. Because the boron supplement of 3 μg/g did not make the dietary intake of this element unusual, it seems likely that the response of the rats to dietary boron in the present study were manifestations of physiological, not pharmacological, actions, and support the hypothesis that boron is an essential nutrient for the rat. Mentions of a trademark or proprietary product does not consitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.
Keywords:Boron  magnesium  methionine  arginine  sulfur amino acids  boron-magnesium interaction  trace element  calcium  minerals
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号