首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of catalase activity as an early response of Arabidopsis thaliana cultured cells to the phytotoxin fusicoccin
Authors:Beffagna Nicoletta  Lutzu Irene
Affiliation:Istituto di Biofisica del CNR-Sezione di Milano, Dipartimento di Biologia, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy. nicoletta.beffagna@unimi.it
Abstract:In Arabidopsis thaliana cells, fusicoccin (FC) treatment induced an early and marked increase in the extracellular H(2)O(2) level. It also increased the huge hypo-osmotic stress-induced oxidative wave and, in addition, prevented the H(2)O(2) peak drop. These effects were apparently not linked to changes in either cytoplasmic pH or cytoplasmic free calcium concentration, since they occurred independently of the activity state of the plasma membrane (PM) H(+)-ATPase and neither influx nor efflux of (45)Ca(2+) was modified by FC. In the presence of diphenylene iodonium (DPI), inhibiting the PM NADPH oxidase presumably responsible for reactive oxygen species (ROS) production, no apoplastic H(2)O(2) development was detected either with or without FC. However, no increase in DPI-sensitive ferricyanide reduction, but rather a gradual decrease, occurred with FC. These results suggested that the H(2)O(2) increase observed with FC was not due to a overproduction of ROS but, more probably, to a reduced capability of FC-treated cells to degrade the H(2)O(2) formed. This view, at first supported by the finding that FC-treated cells failed to break down exogenously supplied H(2)O(2), was clearly confirmed by a series of measurements on exogenous catalase activity, tested in cell-free media of FC-treated samples. This assay, in fact, allowed ascertainment and partial characterization of an as yet unidentified factor increasingly accumulating in the incubation medium of FC-treated cells, behaving as a non-competitive catalase inhibitor and able to reduce markedly the cell's capability for H(2)O(2) scavenging.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号