首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interaction of a purified hydrophobic protein from myelin with phospholipid membranes: studies on ultrastructure, phase transitions and permeability.
Authors:D Papahadjopoulos  W J Vail  M Moscarello
Abstract:A purified protein fraction from the proteolipids of human brain myelin was recombined with different lipids either in aqueous buffer or in a chloroform-methanol-water (10:5:1, v/v/v) mixture. It was found that under both conditions it binds strongly to phospholipids irrespective of surface charge, the presence of cholesterol or double bonds on the fatty acyl chains. The buoyant density of the resulting lipoprotein membranes is intermediate to that of pure lipids, and proteins. The lipoproteins formed by either of these methods were observed by either freeze-fracture or negative stain electron-microscopy. The overall morphology was similar to that of pure phospholipids, showing large closed multilamellar vesicles. The presence of the protein was detected by the appearance of intramembrane particles in freeze-fracture. The addition of the N-2 protein generally increases the permeability vesicles to 22-Na-+ by 2-3 orders of magnitude depending on the concentration. The presence of calcium in the aqueous medium further increases the Na-+ efflux through negatively charged vesicles. Changes in lipid composition, surface charge, cholesterol, etc., have no appreciable influence on the effect of the protein. Differential scanning calorimetry indicates that the presence of small amounts of N-2 have no effect on the lipid phase transition from solid to liquid crystalline. As the amount of protein bound to the phospholipid increases, the enthalpy of the transition decreases, the main endothermic peak broadens, but there is no change on the midpoint temperature. Membranes containing 50% by weight of protein still show a transition with an enthalpy approximately one half that of the original lipid.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号