首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models
Authors:S T Olson  H R Halvorson  I Bj?rk
Affiliation:Henry Ford Hospital, Division of Biochemical Research, Detroit, Michigan 48202.
Abstract:Equilibrium binding of human alpha-thrombin to heparin was investigated at pH 7.4 as a function of thrombin and heparin concentrations, NaCl concentration, temperature, and heparin chain length with the extrinsic fluorescence probe, p-aminobenzamidine, or by quantitative affinity chromatography, in order to distinguish between sequence-specific and nonspecific electrostatic modes of binding. Analysis of binding data by a nonspecific binding model developed for protein-nucleic acid interactions, or by the discrete binding site model previously used to analyze the thrombin-heparin interaction, indicated that both models described the binding interaction equally well over the range of thrombin binding densities accessible to measurement. However, the strong dependence of the thrombin-heparin binding interaction on NaCl concentration, its minimal dependence on temperature, and the increase in apparent binding affinity with increasing heparin oligosaccharide chain length were best accounted for by a nonspecific electrostatic association of thrombin with 5 to 6 anionic residues contained in a 3-disaccharide binding site of heparin. This interaction was characterized by an intrinsic dissociation constant (KD,obs) of 6-10 microM at physiological ionic strength. Although the nonspecific binding model satisfactorily described the binding of thrombin to heparin chains ranging in size from 3 to approximately 13 disaccharides in terms of a single intrinsic KD,obs, deviations from this model were apparent with longer heparin chains (approximately 22 to approximately 35 disaccharides) from a progressive decrease in the intrinsic KD,obs of up to 4-fold. Sedimentation equilibrium analyses of thrombin-heparin complexes suggested a second weaker binding site on thrombin for heparin, which accounted for these deviations as well as the observed insolubility of thrombin-heparin complexes at high thrombin binding densities.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号