Propane-1,2-diol as a potential component of a vitrification solution for corneas |
| |
Authors: | S J Rich W J Armitage |
| |
Affiliation: | Department of Ophthalmology, University of Bristol, United Kingdom. |
| |
Abstract: | Any method of cryopreservation of the cornea must maintain integrity of the corneal endothelium, a monolayer of cells on the inner surface of the cornea that controls corneal hydration and keeps the cornea thin and transparent. During freezing, the formation of ice damages the endothelium, and vitrification has been suggested as a means of achieving ice-free cryopreservation of the cornea. To achieve vitrification at practicable cooling rates, tissues must be equilibrated with high concentrations of cryoprotectants. In this study, the effects of propane-1,2-diol on the structure and function of rabbit corneal endothelium were studied. Corneas were exposed to concentrations of propane-1,2-diol ranging from 10 to 30% v/v in a Hepes-buffered Ringer's solution containing glutathione, adenosine, 5 mmol/liter sodium bicarbonate, and 6% w/v bovine serum albumin. Endothelial function was assessed by monitoring corneal thickness during perfusion of the endothelial surface at 34 degrees C for 6 hr. Exposure to 10-15% v/v propane-1,2-diol was well tolerated for 20 min at 4 degrees C when the cryoprotectant was removed in steps or by sucrose dilution. However, exposure to 25% v/v propane-1,2-diol for 20 min at 0 or -5 degrees C was consistently tolerated only when 2.5% w/v chondroitin sulfate was included in the vehicle solution. Exposure to 30% v/v propane-1,2-diol was harmful at -5 and -10 degrees C. The endothelial damage following exposure to 30% v/v propane-1,2-diol was probably the result of a toxic effect rather than osmotic stress. Although 25% v/v propane-1,2-diol does not vitrify at cooling rates that are practicable for corneas, it could at this concentration form a major component of a vitrification solution comprising a mixture of cryoprotectants. |
| |
Keywords: | |
|
|