首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of Se on the uptake of essential elements in Pteris vittata L.
Authors:Renwei Feng  Chaoyang Wei  Shuxin Tu  Fengchang Wu
Institution:1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
2. College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
3. Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
Abstract:Selenium has been proven to be an antioxidant in plants at low dosages. To understand better the mechanisms of Se toxicity and benefit to plants, more investigations about effects of Se on the uptake of essential elements in plants would be desirable. In this study, hydroponic (nutrient solution culture) and pot (soil culture) experiments were simultaneously conducted to investigate the effects of Se on the uptake and distribution of essential elements in Pteris vittata. L (Chinese brake fern), an arsenic (As)-hyperaccumulator and a selenium (Se)-accumulator. Chinese brake fern took up much more Se in nutrient solution culture than in soil culture, with the highest Se content recorded as 1,573 mg kg?1 in the roots, demonstrating remarkable tolerance to Se. In soil culture, Chinese brake fern also accumulated high content of Se, with the highest content measured as 81 mg kg?1 and 233 mg kg?1, in the fronds and roots, respectively. In soil culture, the addition of Se suppressed the uptake of most measured elements, including magnesium (Mg), potassium (K), phosphorus (P), iron (Fe), copper (Cu) and zinc (Zn). In nutrient solution culture, when the Se content in the tissues of Chinese brake fern was relatively low, the supplementation of Se suppressed the uptake of most essential elements; however, with the increase of Se content, stimulation effects of Se on the uptake of Ca, Mg, K were observed. An initial decrease followed by a rapid increase of Fe content in the fronds of Chinese brake fern was found with Se addition and tissue Se content increasing in nutrient solution culture, suggesting antagonistic and synergic roles of Se on these elements under low and high Se exposure, respectively. We suggest that Ca, Mg, K may be involved in the tolerance mechanism of Se, and that the regulation of Fe accumulation by Se in the fronds might be partially due to the dual effects of Se on Chinese brake fern.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号