首页 | 本学科首页   官方微博 | 高级检索  
     


Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance
Authors:A. BRUNE  W. URBACH  K.-J. DIETZ
Affiliation:Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Botanik 1, Universität Würzburg, Mittlerer Dallenbergweg 64, 97082 Würzburg, Germany
Abstract:The heavy metal zinc was administered to barley seedlings by increasing its concentration in the hydroponic medium. The most dramatic effect was a severe inhibition of root elongation with little effect on root biomass production. The growth of primary leaves was little affected although the zinc content of the primary leaves increased several-fold. A detailed compartment analysis was performed for 10-d-old barley primary leaves. Under low zinc nutrition (2mmol m −3), highest zinc contents were observed in the cytoplasm of mesophyll protoplasts. At inhibitory zinc concentrations in the hydroponic medium (400 μmol m −3), zinc levels dramatically and preferentially increased in the apoplastic space. Elevated zinc levels were also observed in the epidermal cells, and to a lesser extent, in mesophyll vacuoles. The cytoplasmic content of mesophyll protoplasts was unchanged, indicating perfect zinc homeostasis within the leaf. In order to understand the transport mechanisms underlying the steady-state distribution profile, we used 65Zn to conduct uptake experiments with leaves whose lower epidermis had been stripped. The leaves were placed on zinc solutions of varying concentrations containing 65Zn for 5 min to 6 h. After the incubation, the leaves were fractionated into mesophyll and epidermis protoplasts and residue, the latter mainly representing cell wall. Adsorption of Zn to the extracellular matrix was 100 times faster than Zn uptake into the cells. By far the largest portion taken up into the mesophyll protoplasts rapidly appeared in the vacuolar compartment. These results demonstrate the importance of compartmentation and transport as homeostatic mechanisms within the leaves to handle high, possibly toxic, zinc levels in the shoot.
Keywords:apoplast    barley leaves    epidermis    heavy metals    mesophyll protoplasts    vacuole    zinc (compartmentation)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号