首页 | 本学科首页   官方微博 | 高级检索  
   检索      


2,4,6-trichlorophenol (TCP) photobiodegradation and its effect on community structure
Authors:Zhang Yongming  Pu Xuejing  Fang Miaomiao  Zhu Jun  Chen Lujun  Rittmann Bruce E
Institution:Department of Environmental Engineering, College of Life and Environmental Science, Shanghai Normal University, 200234, Shanghai, People's Republic of China. zhym@shnu.edu.cn
Abstract:The mechanisms occurring in a photolytic circulating-bed biofilm reactor (PCBBR) treating 2,4,6-trichlorophenol (TCP) were investigated using batch experiments following three protocols: photodegradation alone (P), biodegradation alone (B), and intimately coupled photodegradation and biodegradation (P&B). Initially, the ceramic particles used as biofilm carriers rapidly adsorbed TCP, particularly in the B experiments. During the first 10 min, the TCP removal rate for P&B was equal to the sum of the rates for P and B, and P&B continued to have the greatest TCP removal, with the TCP concentration approaching zero only in the P&B experiments. When phenol, an easily biodegradable compound, was added along with TCP in order to promote TCP mineralization by means of secondary utilization, P&B was superior to P and B in terms of mineralization of TCP, giving 95% removal of chemical oxygen demand (COD). The microbial communities, examined by clone libraries, changed dramatically during the P&B experiments. Whereas Burkholderia xenovorans, a known degrader of chlorinated aromatics, was the dominant strain in the TCP-acclimated inoculum, it was replaced in the P&B biofilm by strains noted for biofilm formation and biodegrading non-chlorinated aromatics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号