首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A model of the strain-induced B-Z transition
Authors:A Sarai  R L Jernigan
Institution:Laboratory of Mathematical Biology, National Cancer Institute, Bethesda, MD 20205.
Abstract:The B-to-Z transition in supercoiled circular DNA is modeled as a strain-induced nonlinear excitation process. Using a model, in which DNA is regarded as a chain of units with a bistable energy function along the twisting coordinate together with a harmonic inter-unit interaction, we show that a Z region and the accompanying two B-Z junctions of finite width appear naturally as a solution of nonlinear equations, when the strain exceeds a critical value. We examine the B-Z transition behaviour as a function of twist under various situations. We also analyse available experimental results on B-Z transition in supercoiled plasmid with G-C insertions by this mechanistic model in order to estimate the magnitude of model parameters. The energy barrier of the B-Z transition is estimated to be of the order of 1 kcal/mole per base pair. The analysis shows that if the length of the insertion is less than a certain value, the entire insertion converts to Z form at a transition point, but if the insertion is much longer, the B-Z transition exhibits a different behavior, in which part of the insertion flips to Z form and the Z region expands linearly upon changing linking number.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号