首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electrostatic forces at helix-coil boundaries in DNA
Authors:R D Blake  S G Delcourt
Institution:Department of Biochemistry, University of Maine, Orono 04469.
Abstract:The Tm of internal loop-forming (dA.dT)N domains in pBR322 DNA has been measured over a tenfold range of Na+]. The slopes SN = dTm/d log Na+] are linear and decrease in magnitude with decreasing loop size N, signaling a reduction in Na+ released during the transition of these domains to the coil state. Values of SN decrease linearly with increasing N-1 in accordance with the expectation of a simple model for the occurrence of a gradient of long-range electrostatic forces at helix-coil boundaries, and extrapolate almost precisely to the value of S infinity observed for (dA.dT) infinity. These results indicate (1) less counterion is released per phosphate residue from the finite loop than from the infinite-sized loop, and (2) the difference in binding is constant for each boundary formed and independent of the size of the loop within the range examined: approximately 350 base pair (bp) greater than N greater than 71 bp. The slope of the dependence of SN on N-1 indicates the region of higher charge density at the boundary extends at least 18 A into the coil and probably 40-50 A before dropping to a value characteristic of the unperturbed coil. The free energy for excess counterion binding at boundaries can be expressed by -delta G/RT = 10.47 logNa+] + 5.234 When the loop entropy function in a statistical mechanical algorithm for the dissociation of DNA is weighted by this quantity, calculated Tm are seen to vary by only +/- 0.09 degrees C from observed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号