首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Towards the discovery of alcohol dehydrogenases: NAD(P)H fluorescence-based screening and characterization of the newly isolated Rhodococcus erythropolis WZ010 in the preparation of chiral aryl secondary alcohols
Authors:Chi Yang  Xiangxian Ying  Meilan Yu  Yinjun Zhang  Bin Xiong  Qingqing Song  Zhao Wang
Institution:College of Biological and Environmental Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, Zhejiang, China.
Abstract:A simple and reliable procedure was developed to screen biocatalysts with high alcohol dehydrogenase activity, efficient internal coenzyme regeneration, and high stereoselectivity. The strategy of activity screening in a microtitre plate format was based on the detection of fluorescence of NAD(P)H originating from the oxidation of alcohols. The primary and secondary screenings from soil samples yielded a versatile bacterial biocatalyst Rhodococcus erythropolis WZ010 demonstrating potential for the preparation of chiral aryl secondary alcohols. In terms of activity and stereoselectivity, the optimized reaction conditions in the stereoselective oxidation were 30?°C, pH 10.5, and 250?rpm, whereas bioreduction using glucose as co-substrate was the most favorable at 35?°C and pH 7.5 in the static reaction mixture. Under the optimized conditions, fresh cells of the strain stereoselectively oxidized the (S)-enantiomer of racemic 1-phenylethanol (120?mM) to acetophenone and afforded the unoxidized (R)-1-phenylethanol in 49.4?% yield and >99.9?% enantiomeric excess (e.e.). In the reduction of 10?mM acetophenone, the addition of 100?mM glucose significantly increased the conversion rate from 3.1 to 97.4?%. In the presence of 800?mM glucose, acetophenone and other aromatic ketones (80?mM) were enantioselectively reduced to corresponding (S)-alcohols with excellent e.e. values. Both stereoselective oxidation and asymmetric reduction required no external cofactor regeneration system.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号