首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microbial synergy via an ethanol-triggered pathway
Authors:Smith Michael G  Des Etages Shelley G  Snyder Michael
Institution:Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
Abstract:We have discovered a microbial interaction between yeast, bacteria, and nematodes. Upon coculturing, Saccharomyces cerevisiae stimulated the growth of several species of Acinetobacter, including, A. baumannii, A. haemolyticus, A. johnsonii, and A. radioresistens, as well as several natural isolates of Acinetobacter. This enhanced growth was due to a diffusible factor that was shown to be ethanol by chemical assays and evaluation of strains lacking ADH1, ADH3, and ADH5, as all three genes are involved in ethanol production by yeast. This effect is specific to ethanol: methanol, butanol, and dimethyl sulfoxide were unable to stimulate growth to any appreciable level. Low doses of ethanol not only stimulated growth to a higher cell density but also served as a signaling molecule: in the presence of ethanol, Acinetobacter species were able to withstand the toxic effects of salt, indicating that ethanol alters cell physiology. Furthermore, ethanol-fed A. baumannii displayed increased pathogenicity when confronted with a predator, Caenorhabditis elegans. Our results are consistent with the concept that ethanol can serve as a signaling molecule which can affect bacterial physiology and survival.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号