首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bacterial resistance to uncouplers
Authors:K Lewis  V Naroditskaya  A Ferrante  I Fokina
Institution:(1) Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139 Cambridge, Massachusetts
Abstract:Uncoupler resistance presents a potential challenge to the conventional chemiosmotic coupling mechanism. InE. coli, an adaptive response to uncouplers was found in cell growing under conditions requiring oxidative phosphorylation. It is suggested that uncoupler-resistant mutants described in the earlier literature might represent a constitutive state of expression of this ldquolow energy shockrdquo adaptive response. In the environment, bacteria are confronted by nonclassical uncoupling factors such as organic solvents, heat, and extremes of pH. It is suggested that the low energy shock response will aid the cell in coping with the effects of natural uncoupling factors. The genetic analysis of uncoupler resistance has only recently began, and is yielding interesting and largely unexpected results. InBacillus subtilis, a mutation in fatty acid desaturase causes an increased content of saturated fatty acids in the membrane and increased uncoupler resistance. The protonophoric efficiency of uncouplers remains unchanged in the mutants, inviting nonorthodox interpretations of the mechanism of resistance. InE. coli, two loci conferring resistance to CCCP and TSA were cloned and were found to encode multidrug resistance pumps. Resistance to one of the uncouplers, TTFB, remained unchanged in strains mutated for the MDRs, suggesting a resistance mechanism different from uncoupler extrusion.
Keywords:Uncouplers  oxidative phosphorylation  ATP synthesis  Na+ energetics  E  coli  B  subtilis  low-energy shock  stress response
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号