首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stereological Studies of the Effects of α-MSH and cAMP on Melanosomes in Melanoma Cells
Authors:DONG FANG  PETER DOCKERY  BRIAN WEATHERHEAD
Abstract:The effects of α-MSH and cAMP on melanosomes in Cloudman S91 melanoma cells were investigated by modern stereological techniques. Cells were cultured for 4 days in medium containing α-MSH or cAMP harvested at 24 hour intervals; some were frozen for melanin assay and the reminder embedded in Epon for light and electron microscopy. Cellular and melanosomal parameters were estimated by new stereological probes. We found that both stimulators induced increases in nuclear volume, cell volume, and the volume fractions and volumes of premelanosomes (VVpm,cellVpm) and mature melanosomes (VVmm,cellVmm) and the number of mature melanosomes (Nmm). Both stimulators also caused declines in the volume of individual mature melanosomes (Vimm) the melanin content per mature melanosome unit volume and the melanin content per individual mature melanosome. The increases in the volume of individual premelanosomes and the number of premelanosomes were only induced by cAME The effect cAMP on some parameters occurred 24 hours prior to α-MSH and was more marked. The response of premelanosomes to the stimulators was more sensitive than mature melanosomes. These results suggest that both stimulators enchanced melanogenesis by increasing the VVpm,cellVVmm,cellVpm, Vmm and Nmm. The melanogenic level did not depend on the Vimm and melanin concentration in melanosomes. The maturation of premelanosomes was involved in melanogenesis induced by both stimulators, but, de novo synthesis and enlargement of premelanosomes were only stimulated by cAME It imply that exogenous cAMP may affect melanosomes, and hence melanogenesis in quantitatively or qualitatively different ways to α-MSH.
Keywords:Cloudman S91  Melanoma  Melanogenesis  Melanosome  Melanin  cAMP  MSH  Stereology  Volume-weighted mean volume  Number-weighted mean volume
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号