首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Creative destruction of the microtubule array
Authors:Peter W Baas  Wenqian Yu
Institution:Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia, PA USA
Abstract:Comment on: Mukherjee S, et al. Cell Cycle 2012; 11:2359-66.Typical cells contain a dense array of microtubules that serves as a structural backbone and also provides a substrate against which molecular motor proteins generate force. Cells transitioning through the cell cycle or undergoing significant morphological changes must be able to tear apart the microtubule array and reconstruct it into new configurations, either partially or completely. The microtubule field was revolutionized in the 1980s with the introduction of the dynamic instability model,1 now broadly recognized as a fundamental mechanism by which microtubule populations are reconfigured.2 Dynamic instability involves the catastrophic disassembly of microtubules, generally from their plus ends, as well as the rapid reassembly of microtubules and selective stabilization of particular ones. Microtubules can be stabilized along their length by binding to various proteins and can be attached at their minus ends to structures such as the centrosome and “captured” at their plus ends by proteins in the cell’s cortex.2 Given the contribution of these stabilizing and anchoring factors, additional mechanisms beyond dynamic instability are required to tear down previous microtubule structures so that new ones can be constructed. Borrowing from the field of economics, we refer to this as creative destruction.Various proteins such as stathmin3 and kinesin-134 contribute to creative destruction by promoting loss of tubulin subunits from the ends of the microtubules. We find especially interesting a category of AAA enzymes called microtubule-severing proteins that use the energy of ATP hydrolysis to yank at tubulin subunits within the microtubule, thereby causing the lattice to break.5 If this occurs along the length of the microtubule, the microtubule will be severed into pieces. If this occurs at either of the two ends of the microtubule, the microtubule will lose subunits from that end. The first discovered and best-studied microtubule-severing proteins are katanin and spastin.Thanks to David Sharp and his colleagues at Albert Einstein College of Medicine, as well as other workers in the field, we now know that cells express at least five other AAA proteins with potential microtubule-severing properties, on the basis of sequence similarity to katanin and spastin in the AAA region.5 Two of these, called katanin-like-1 and katanin-like-2, are very similar to katanin. The three others are similar to one another, collectively termed fidgetins (fidgetin, fidgetin-like-1 and fidgetin-like-2). One possibility is that all seven of the microtubule-severing proteins are regulated similarly and are functionally redundant with one another. A more compelling possibility is that, while there is some functional redundancy, there is also a division of labor, with each severing protein displaying distinct properties and carrying out its own duties. Thus far, Sharp’s studies on mitosis support the latter scenario, with katanin, fidgetin and spastin having characteristic distributions within the spindle, resulting in unique phenotypes when depleted.6In a new article, Sharp’s group has confirmed that fidgetin has microtubule-severing properties. Interestingly, fidgetin depolymerizes microtubules preferentially from the minus end.7 In addition, the new work shows that in human U2OS cells, fidgetin targets to the centrosome, where most minus ends of microtubules are clustered, suggesting a scenario by which fidgetin suppresses microtubule growth from the centrosome as well as attachment to it. Consistent with this scenario, the authors show that experimental depletion of fidgetin reduces that speed of poleward tubulin flux as well as the speed of anaphase A chromatid-to-pole motion and also results in an increase in both the number and length of astral microtubules. Notably, this contrasts with katanin, which favors the plus ends of microtubules, for example, at the chromosome during cell division6 and at the leading edge of motile cells.8The authors close their article by pointing out that microtubule-severing is important beyond mitosis, for example, in the restructuring of the microtubule array in neurons and migrating cells, and we would point to plants as well.9 We previously described a mechanism called “cut and run,” wherein the severing of microtubules is important for motility within the microtubule array, as short microtubules are more mobile than long ones.9 Now, inspired by the work of Sharp and colleagues, we envision “creative destruction” as another way of understanding the crucial roles played by a diversity of microtubule-severing proteins in cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号