首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth asymmetry precedes differential auxin response during apical hook initiation in Arabidopsis
Authors:Yang Peng  Dan Zhang  Yuping Qiu  Zhina Xiao  Yusi Ji  Wenyang Li  Yiji Xia  Yichuan Wang and Hongwei Guo
Abstract:The development of a hook-like structure at the apical part of the soil-emerging organs has fascinated botanists for centuries, but how it is initiated remains unclear. Here, we demonstrate with high-throughput infrared imaging and 2-D clinostat treatment that, when gravity-induced root bending is absent, apical hook formation still takes place. In such scenarios, hook formation begins with a de novo growth asymmetry at the apical part of a straightly elongating hypocotyl. Remarkably, such de novo asymmetric growth, but not the following hook enlargement, precedes the establishment of a detectable auxin response asymmetry, and is largely independent of auxin biosynthesis, transport and signaling. Moreover, we found that functional cortical microtubule array is essential for the following enlargement of hook curvature. When microtubule array was disrupted by oryzalin, the polar localization of PIN proteins and the formation of an auxin maximum became impaired at the to-be-hook region. Taken together, we propose a more comprehensive model for apical hook initiation, in which the microtubule-dependent polar localization of PINs may mediate the instruction of growth asymmetry that is either stochastically taking place, induced by gravitropic response, or both, to generate a significant auxin gradient that drives the full development of the apical hook.
Keywords:
点击此处可从《Journal of Integrative Plant Biology》浏览原始摘要信息
点击此处可从《Journal of Integrative Plant Biology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号