首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carbon and water fluxes in ecologically vulnerable areas in China
Authors:Zhongmin Hu  Shiping Chen and Yanbin Hao
Abstract:Ecologic vulnerable areas (EVAs) are the regions where ecosystems are fragile and vulnerable to suffer from degradation with external disturbances, e.g. environmental changes and human activities (Feng et al. 2022; Wang et al. 2019). EVAs in China are widely distributed and account for more than 55% China’s land area (Ministry of Ecology and Environment of the People’s Republic of China 2008). The ecosystem in EVAs, chartered with low stability, weak resistance and high vulnerability, has been experiencing significant degradation owing to the impacts of global climate change and human activities (Bai et al. 2018; Chen et al. 2021; Yu et al. 2022). The EVAs in China are not only the most serious areas of environmental degradation, but also the most poverty-stricken regions (Wang et al. 2019). Harsh environmental condition (drought, low temperature and strong radiation) and limited resource supply (water, soil nutrients, etc.) constrain the vegetation productivity and ecosystem services of EVAs (Li et al. 2021). Climate change adds new challenges with warmer temperatures, changing rainfall regime and increasing frequency of extreme events (drought, heat wave, storms, etc.), which make it is more difficult to predict the changes of ecosystem processes and functions in future scenarios (Piao et al. 2020; Reid et al. 2014). Carbon and water fluxes are the core ecosystem processes, which is linked to diverse ecosystem services (Lian et al. 2021). Therefore, clarifying the variations and controls of ecosystem carbon and water fluxes is an effective approach to clarifying how ecosystem respond to global change in EVAs (Baldocchi 2020). As the only technique can directly measure the carbon, water and energy fluxes between vegetation and atmosphere, eddy covariance technique has been considered as a standard method for flux observations (Chen et al. 2020). By integrating long-term, eddy covariance measurements over time and space, researches are able to assess ecosystem metabolism at different time scales (hours to decades) (Forzieri et al. 2020; Han et al. 2020; Jung et al. 2017). Eddy covariance measurements also produce information on how ecosystem respond to the changes in climate, which is useful for assessing ecosystem carbon sequestration (Hu et al. 2018), water and energy balance (Forzieri et al. 2020), resource use efficiency (Liu et al. 2019) and ecosystem feedback to climate change (Huang et al. 2019; Piao et al. 2020; Yue et al. 2020). Long-term flux measurements are also vital for detecting the responses of ecosystem functions to extreme events, optimizing and validating models on regional and global scales (Baldocchi 2020). Combining with remote sensing and ecosystem modeling techniques, scientists can upscale and evaluate the functional relations between carbon and water fluxes with environmental variables at high resolution and across diverse spatial/temporal scales (Niu et al. 2017; Xia et al. 2020).
Keywords:
点击此处可从《Journal of Plant Ecology》浏览原始摘要信息
点击此处可从《Journal of Plant Ecology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号