首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular basis of perinatal hypophosphatasia with tissue-nonspecific alkaline phosphatase bearing a conservative replacement of valine by alanine at position 406. Structural importance of the crown domain
Authors:Numa Natsuko  Ishida Yoko  Nasu Makiko  Sohda Miwa  Misumi Yoshio  Noda Tadashi  Oda Kimimitsu
Affiliation:Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Japan.
Abstract:Hypophosphatasia, a congenital metabolic disease related to the tissue-nonspecific alkaline phosphatase gene (TNSALP), is characterized by reduced serum alkaline phosphatase levels and defective mineralization of hard tissues. A replacement of valine with alanine at position 406, located in the crown domain of TNSALP, was reported in a perinatal form of hypophosphatasia. To understand the molecular defect of the TNSALP (V406A) molecule, we examined this missense mutant protein in transiently transfected COS-1 cells and in stable CHO-K1 Tet-On cells. Compared with the wild-type enzyme, the mutant protein showed a markedly reduced alkaline phosphatase activity. This was not the result of defective transport and resultant degradation of TNSALP (V406A) in the endoplasmic reticulum, as the majority of newly synthesized TNSALP (V406A) was conveyed to the Golgi apparatus and incorporated into a cold detergent insoluble fraction (raft) at a rate similar to that of the wild-type TNSALP. TNSALP (V406A) consisted of a dimer, as judged by sucrose gradient centrifugation, suggestive of its proper folding and correct assembly, although this mutant showed increased susceptibility to digestion by trypsin or proteinase K. When purified as a glycosylphosphatidylinositol-anchorless soluble form, the mutant protein exhibited a remarkably lower Kcat/Km value compared with that of the wild-type TNSALP. Interestingly, leucine and isoleucine, but not phenylalanine, were able to substitute for valine, pointing to the indispensable role of residues with a longer aliphatic side chain at position 406 of TNSALP. Taken together, this particular mutation highlights the structural importance of the crown domain with respect to the catalytic function of TNSALP.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号