Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein |
| |
Authors: | D C Turner T C Stadtman |
| |
Affiliation: | Laboratory of Biochemistry, Section on Enzymes, National Heart and Lung Institute, National Institutes of Health, Bethesda, Maryland 20014 U.S.A. |
| |
Abstract: | A procedure for the isolation in nearly homogeneous form of protein A, a low molecular-weight, acidic, protein component of clostridial glycine reductase, is described. The yield of protein A is high only in early log phase cells of Clostridium sticklandii grown under standard laboratory conditions in a rich tryptone-yeast extract-distilled water medium but, when selenite (1 μm) is added, the levels of protein A remain high throughout the entire log phase of growth. Addition of 75Se-labeled selenite to the culture medium results in the highly selective incorporation of radioactive selenium into protein A. The procedure for isolation of protein A results in about a 700-fold enrichment when extracts prepared from cells that actively catalyze glycine reduction are used. However, the catalytic activity of the purified protein varies considerably from preparation to preparation. The molecular weight of protein A, estimated by sucrose density-gradient centrifugation, is approximately 12,000.The other higher molecular-weight components of glycine reductase are associated with the membrane fraction of the cell and are released as soluble proteins by sonic disruption of the membrane. After purification by ion-exchange and molecular sieve chromatography, these components are separated by DEAE-cellulose chromatography into two protein fractions both necessary for glycine reductase activity in protein A-supplemented assays. One of these fractions consists of a major protein component, protein B, also nearly homogeneous as determined by polyacrylamide gel electrophoresis. The other protein fraction still is heterogeneous. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|