首页 | 本学科首页   官方微博 | 高级检索  
     


Androgen metabolism in the male hamster--1. Metabolism of testosterone in the pituitary gland and in the brain of animals exposed to different photoperiods
Authors:P Negri-Cesi  F Celotti  R C Melcangi  L Martini
Abstract:It is known that the metabolism of testosterone in the brain and in the anterior pituitary is different in mammalian and in photoperiodic avian species. In many mammalian species, testosterone is mainly metabolized to 5-alpha-reduced compounds (e.g. 17-beta-hydroxy-5-alpha-androstan- 3-one, 5 alpha-DHT and 3-alpha,17-beta-dihydroxy-5-alpha-androstane, 5-alpha,3-alpha-diol) and, to a smaller extent, to 4-androstene-3,17-dione (androstenedione), while in birds, androstenedione is the main testosterone metabolite and the conversion to the 5-alpha-reduced compounds is quantitatively negligible. In avian species, testosterone is also converted to 5-beta-reduced steroids (mainly 17-beta-hydroxy-5-beta-androstan-3-one, 5-beta-DHT and 3-alpha,17-beta-dihydroxy-5-beta-androstane, 5-beta,3-alpha-diol), and there is also evidence that in these species testosterone metabolism in the central structures may be influenced by the photoperiod. Since the hamster is a mammal whose reproductive cycle is controlled by day length, it has been analyzed whether: (a) the central structures of the hamster (cerebral cortex, hypothalamus and anterior pituitary) metabolize testosterone in vitro following a mammalian (5-alpha-reduced derivatives) or an avian (androstenedione and 5-beta-reduced compounds) pattern; and (b) the metabolism of testosterone in the same structures may be modified by the exposure to different photoperiods (LD 14:10 or LD 8:16). The present data indicate that no one of the hamster structures examined produces the 5-beta-reduced derivatives. Moreover, the formation of the 5 alpha-DHT is quantitatively low, and is not affected by the photoperiod. In contrast, androstenedione is formed in quite high yields and the exposure of the animals to 60 days of short photostimulation increases the formation of this steroid in the pituitary gland, but not in the brain structures. From these data, it appears that the central structures of the hamster metabolize testosterone with a pattern which is intermediate between that of birds and mammals.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号