首页 | 本学科首页   官方微博 | 高级检索  
     


Soil seed bank dynamics in post-fire heathland succession in south-eastern Australia
Authors:T. J. Wills  J. Read
Affiliation:(1) School of Biological Sciences, Monash University, Clayton, VA, 3800, Australia
Abstract:Soil seed banks can exert a strong influence on the path of vegetation succession following fire, with species varying in their capacity to persist in the seed bank over time, leading to changes in seed bank composition and propagules available for post-fire colonisation. This study examined the effect of time since fire on soil seed bank dynamics in a chronosequence of seven sites spanning 26 years in a south-eastern Australian sand heathland. No significant change was evident in the species richness and density of the germinable soil seed bank, but species composition differed significantly among young (0–6 years since fire), intermediate (10–17 years since fire) and old-aged (24–26 years since fire) sites (using presence/absence data). No significant trend was observed in the similarity between the extant vegetation and the soil seed bank with time since fire. A total of 32% of the species recorded in the soil seed bank were not present in the above-ground vegetation at the same site, which suggests that species requiring fire for germination may be present in the seed bank. Most species present in the extant vegetation were not recorded (63%) or were in very low abundances in the soil seed bank (29%). The mode of regeneration appears to be the major determinant of species absence in the soil seed bank, as 66% of species occurring in the extant vegetation but not in the seed bank have the capacity to regenerate by resprouting. This study shows that a major shift in the successional pathway after fire due to altered seed bank composition is unlikely in this vegetation; most species not recorded in the seed bank are either resprouters (obligate or facultative) or serotinous, suggesting that they will readily regenerate following fire. Unless fire frequencies are high and kill fire-sensitive obligate seeders before they reach maturity, the chance that the soil seed bank could substantially alter vegetation composition within the study area after fire is low. However, it is unclear how successional pathways may alter in response to severe fires with the potential to kill both seeders and resprouters.
Keywords:Chronosequence  Fire  Germination trial  Resprouting  Species composition  Species richness
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号