首页 | 本学科首页   官方微博 | 高级检索  
     


A new trinuclear complex of platinum and iron efficiently promotes cleavage of plasmid DNA.
Authors:E L Lempers, J S Bashkin,   N M Kosti&#x  
Affiliation:E L Lempers, J S Bashkin, and N M Kostić
Abstract:The compound [[Pt(trpy)]2Arg-EDTA]+ is synthesized in five steps, purified, and characterized by 1H, 13C, and 195Pt NMR spectroscopy, mass spectrometry, UV-vis spectrophotometry, and elemental analysis. The binuclear [[(Pt(trpy)]2Arg]3+ moiety binds to double-stranded DNA, and the chelating EDTA moiety holds metal cations. In the presence of ferrous ions and the reductant dithiothreitol, the new compound cleaves DNA. It cleaves a single strand in the pBR322 plasmid nearly as efficiently as methidiumrpropyl-EDTA (MPE), and it cleaves a restriction fragment of the XP10 plasmid nonselectively and more efficiently than [Fe(EDTA)]2-. The mechanism of cleavage was studied in control experiments involving different transition-metal ions, superoxide dismutase, catalase, glucose oxidase with glucose, metal-sequestering agents, and deaeration. These experiments indicate that adventitious iron and copper ions, superoxide anion, and hydrogen peroxide are not involved and that dioxygen is required. The cleavage apparently is done by hydroxyl radicals generated in the vicinity of the DNA molecule. The reagent [[Pt(trypy)]2Arg-EDTA]+ differs from methidiumpropyl-EDTA in not containing an intercalator. This difference in binding modes between the binuclear platinum(II) complex and the planar heterocycle may cause useful differences between the two reagents in cleavage of nucleic acids.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号