首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lipid-protein interactions of growth factor receptor-bound protein 14 in insulin receptor signaling
Authors:Rajala Raju V S  Chan Michael D  Rajala Ammaji
Institution:Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA. raju-rajala@ouhsc.edu
Abstract:Many retinal degenerative diseases show an early loss of rod cells followed by cone cells. In these degenerations the pathological phenotype is apoptosis. We have previously demonstrated the light-dependent tyrosine phosphorylation of the insulin receptor in the retina, which leads to the activation of anti-apoptotic signaling molecules. The mechanism of the regulation of the insulin receptor in the retina is not known. Yeast two-hybrid screening of a bovine retinal cDNA library with the cytoplasmic domain of the retinal insulin receptor (IRbeta) identified a member of the Grb7 (growth factor receptor-bound protein 7) gene family, Grb14. In this report, we describe the unique features of Grb14. Grb14 forms a specific complex with the cytoplasmic domain of IRbeta when both are expressed as hybrid proteins in yeast cells. This interaction is strictly dependent upon receptor tyrosine kinase activity. Deletion mutagenesis on Grb14 indicated a phosphorylated insulin receptor interacting (PIR) domain between the PH (pleckstrin homology) and SH2 (Src homology) domains that binds to IRbeta. Nuclear import assays in yeast indicated the presence of a functional nuclear localization signal in Grb14 between amino acids 63 and 68 (RRKKD). Subcellular localization of isolated retinas probed with anti-Grb14 antibody further confirmed the presence of Grb14 in nuclear fractions. Analysis using a protein-lipid overlay assay indicated binding of Grb14 and its PH domain to D3 phosphoinositides. In addition, Grb14-phosphoinositide 3,4,5-trisphosphate complexes are detected in lysates prepared from insulin-stimulated retina tissues, whereas Grb14-phosphoinositide 4,5-bisphosphate interactions are observed under non-insulin stimulated conditions. These findings suggest that Grb14 could be a diverse regulator of insulin receptor mediated pathways in the retina.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号