首页 | 本学科首页   官方微博 | 高级检索  
     


Anaerobic thermophilic fermentation for carboxylic acid production from in-storage air-lime-treated sugarcane bagasse
Authors:Zhihong Fu  Mark T. Holtzapple
Affiliation:(1) Florida Center for Renewable Chemicals and Fuels (FCRC), Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611-0700, USA;(2) Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843-3122, USA
Abstract:Wet storage and in situ lime pretreatment (50 °C, 1-atm air, 56 days, excess lime loading of 0.3 g Ca(OH)2/g dry biomass) of sugarcane bagasse (4,000 g dry weight) was performed in a bench-scale pile pretreatment system. Under thermophilic conditions (55 °C, NH4HCO3 buffer, methane inhibitors), air-lime-treated bagasse (80 wt.%) and chicken manure (20 wt.%) were anaerobically co-digested in 1-L rotary fermentors by a mixed culture of marine microorganisms (Galveston, TX). During four-stage countercurrent fermentation, the resulting carboxylic acids consisted of primarily acetate (average 87.7 wt.%) and butyrate (average 9.0 wt.%). The experimental fermentation trains had the highest yield (0.47 g total acids/g volatile solids (VS) fed) and highest selectivity (0.79 g total acids/g VS digested) at a total acid concentration of 28.3 g/L, which is equivalent to an ethanol yield of 105.2 gal/(tonne VS fed). Both high total acid concentrations (>44.7 g/L) and high substrate conversions (>77.5%) are predicted for countercurrent fermentations of bagasse at commercial scale, allowing for an efficient conversion of air-lime-treated biomass to liquid transportation fuels and chemicals via the carboxylate platform.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号