首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of tryptophan hydroxylase activity and decreased 5-HT1A receptor binding in a mouse model of Huntington's disease
Authors:Yohrling IV George J  Jiang George C-T  DeJohn Molly M  Robertson Daniel J  Vrana Kent E  Cha Jang-Ho J
Institution:Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. yohrling@helix.mgh.harvard.edu
Abstract:The pathogenic mechanisms of the mutant huntingtin protein that cause Huntington's disease (HD) are unknown. Previous studies have reported significant decreases in the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the brains of the R6/2 transgenic mouse model of HD. In an attempt to elucidate the cause of these neurochemical perturbations in HD, the protein levels and enzymatic activity of tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, were determined. Enzyme activity was measured in brainstem homogenates from 4-, 8-, and 12-week-old R6/2 mice and compared with aged-matched wild-type control mice. We observed a 62% decrease in brainstem TPH activity (p = 0.009) in 4-week-old R6/2 mice, well before the onset of behavioral symptoms. In addition, significant decreases in TPH activity were also observed at 8 and 12 weeks of age (61%, p = 0.02 and 86%, p = 0.005, respectively). In the 12-week-old-mice, no change in immunoreactive TPH was observed. In vitro binding showed that TPH does not bind to exon 1 of huntingtin in a polyglutamine-dependent manner. Specifically, glutathione-S-transferase huntingtin exon 1 proteins with 20, 32 or 53 polyglutamines did not interact with radiolabeled tryptophan hydroxylase. Therefore, the inhibition of TPH activity does not appear to result from a direct huntingtin/TPH interaction. Receptor binding analyses for the 5-HT1A receptor in 12-week-old R6/2 mice revealed significant reductions in 8-OH-3H]DPAT binding in several hippocampal and cortical regions. These results demonstrate that the serotonergic system in the R6/2 mice is severely disrupted in both presymptomatic and symptomatic mice. The presymptomatic inhibition of TPH activity in the R6/2 mice may help explain the functional consequences of HD and provide insights into new targets for pharmacotherapy.
Keywords:brainstem  GST pull-down  Huntington's disease  receptor binding  serotonin  tryptophan hydroxylase
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号