首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Coupling of the muscarinic m2 receptor to G protein-activated K(+) channels via Galpha(z) and a receptor-Galpha(z) fusion protein. Fusion between the receptor and Galpha(z) eliminates catalytic (collision) coupling
Authors:Vorobiov D  Bera A K  Keren-Raifman T  Barzilai R  Dascal N
Institution:Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
Abstract:G protein-activated K(+) channel (GIRK), which is activated by the G(betagamma) subunit of heterotrimeric G proteins, and muscarinic m2 receptor (m2R) were coexpressed in Xenopus oocytes. Acetylcholine evoked a K(+) current, I(ACh), via the endogenous pertussis toxin (PTX)-sensitive G(i/o) proteins. Activation of I(ACh) was accelerated by increasing the expression of m2R, suggesting a collision coupling mechanism in which one receptor catalytically activates several G proteins. Coexpression of the alpha subunit of the PTX-insensitive G protein G(z), Galpha(z), induced a slowly activating PTX-insensitive I(ACh), whose activation kinetics were also compatible with the collision coupling mechanism. When GIRK was coexpressed with an m2R x Galpha(z) fusion protein (tandem), in which the C terminus of m2R was tethered to the N terminus of Galpha(z), part of I(ACh) was still eliminated by PTX. Thus, the m2R of the tandem activates the tethered Galpha(z) but also the nontethered G(i/o) proteins. After PTX treatment, the speed of activation of the m2R x Galpha(z)-mediated response did not depend on the expression level of m2R x Galpha(z) and was faster than when m2R and Galpha(z) were coexpressed as separate proteins. These results demonstrate that fusing the receptor and the Galpha strengthens their coupling, support the collision-coupling mechanism between m2R and the G proteins, and suggest a noncatalytic (stoichiometric) coupling between the G protein and GIRK in this model system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号