The ecological significance of the coarse soil fraction for Picea abies (L.) Karst. seedling nutrition |
| |
Authors: | N. Koele E. E. Hildebrand |
| |
Affiliation: | (1) Department of Environmental Engineering, Huajiachi Campus, Zhejiang University, 268 Kaixuan Road, Hangzhou, Zhejiang, 310029, People’s Republic of China;(2) Department of Land, Air, and Water Resources, University of California Davis, Davis, CA 95616, USA;(3) Department of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China;(4) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100039, China |
| |
Abstract: | Elsholtzia splendens is a Cu-tolerant plant growing in copper mine areas in the south of China. In this study, X-ray absorption spectroscopy (XAS) was used to investigate the Cu speciation and biotransformation in E. splendens with 300 μM Cu treatment from 10 days to 60 days. The results showed that 300 μM Cu was phytotoxic to E. spendens. The Cu K-edge X-ray absorption near edge structure (XANES) revealed that most copper in roots, stems and leaves exists as divalent Cu. Cu speciation changed depending on the treatment time, but there was no unidirectional trend in roots, stems, and leaves. The percentages of potential Cu ligands in all samples were estimated by fitting the XANES spectra with linear combinations. Most Cu in roots, stems and leaves was bound with cell wall and histidine (His)-like ligands, while a minor proportion of the Cu was bound to oxalate and glutathione-like ligands. The fitting results of Cu K-edge extended X-ray absorption fine structure (EAXFS) showed that nitrogen/oxygen (N/O) ligands were dominant in roots, stems and leaves of the plant, while S ligands were rare. All these results suggest that Cu bound by N/O ligands plays a key role in Cu detoxification of E. splendens, and a role for classical metal-detoxifying S ligands, such as metallothioneins and phytochelatins, in Cu detoxification of E. splendens is not supported in the present study. Due to the phytotoxicity of 300 μM Cu to E. splendens, the question of whether S ligands play a significant role in Cu detoxification in E. splendens exposed to lower levels of Cu should be further studied. |
| |
Keywords: | Elsholtzia splendens Copper Cell wall Ligands X-ray absorption spectroscopy |
本文献已被 SpringerLink 等数据库收录! |
|