首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Operational stabilities of different chemical derivatives of Novozym 435 in an alcoholysis reaction
Institution:1. Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Departamento de Biotecnologia Farmacêutica, Centro de Ciências e Saúde, Bloco B, 1 andar (1 floor), Laboratório Multidisciplinar de Pesquisas em Biotecnologia, CEP 21941902, Rio de Janeiro, Brazil;2. Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain;3. Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, CEP 60455-760, Fortaleza, CE, Brazil;4. Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Brazil;5. Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga, Colombia;1. CONACYT - Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) - Consorcio CIDAM, Km. 8 Antigua Carretera a Pátzcuaro s/n, 58341 Morelia, Michoacán, México;2. Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, CEP 62790-970, Redenção, CE, Brazil;3. Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia;4. Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Campus de San Vicente del Raspeig, Ap. 99, 03080 Alicante, Spain;5. Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia;6. Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, P.O. Box 15090, 9500, Porto Alegre, RS, Brazil;7. Departamento de Biocatálisis ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain;1. Deparatamento Biocatálisis. ICP-CSIC, Campus UAM-CSIC Madrid, Spain;2. Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, CEP 60455-760, Fortaleza, CE, Brazil;1. Department of Chemical Engineering, University of Hyogo, Himeji, Hyogo, Japan;2. National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan;3. Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamigori, Ako, Hyogo 678-1297, Japan;4. Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan;1. Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, CEP 60455760, Fortaleza, CE, Brazil;2. Grupo de Química de Materiais Avançados (GQMat), Universidade Federal do Ceará, Campus do Pici, CP 12100, CEP 60451-970, Fortaleza, CE, Brazil;3. Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Campus Apodi, CEP 59700-000, Apodi, RN, Brazil;4. Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici, CEP 60455760, Fortaleza, CE, Brazil;5. Departamento de Física, Universidade Federal do Rio Grande do Norte, CEP 59078900 Natal, RN, Brazil;6. Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790970, Redenção CE, Brazil
Abstract:Industrial use of Novozym 435 in synthesis of structured lipids and biodiesel via alcoholysis is limited by mass transfer effects of the glycerides through immobilized enzymes and its low operational stability under operation conditions. To better understand this, differently modified Novozym 435 preparations, differing in their surface nature and in their interactions with reactants, have been compared in the alcoholysis of Camelina sativa oil. The three modifications performed have been carried out under conditions where all exposed groups of the enzyme have been modified. These modifications were: 2,4,6-trinitrobenzensulfonic acid (Novo-TNBS), ethylendiamine (Novo-EDA) and polyethylenimine (Novo-PEI). Changes in their operational performance are analyzed in terms of changes detected by scan electron microscopy in the support morphology.The hydrophobic nature of the TNBS accelerates the reaction rate; t-ButOH co-solvent swells the macroporous acrylic particles of Lewatit VP OC 1600 in all biocatalysts, except in the case of Novo-PEI. This co-solvent only increases the maximal conversions obtained at 24 h using the modified biocatalysts. t-ButOH reduces enzyme inactivation by alcohol and water. In a co-solvent system, these four biocatalysts remain fully active after 14 consecutive reaction cycles of 24 h, but only Novo-TNBS yields maximal conversion before cycle 5. Some deposits on biocatalyst particles could be appreciated during reuses, and TNBS derivatization diminishes the accumulation of product deposits on the catalyst surface. Most particles of commercial Novozym® 435 are broken after operation for 14 reaction cycles. The broken particles are fully active, but they cause problems of blockage in filtration operations and column reactors. The three derivatizations studied make the matrix particles more resistant to rupture.
Keywords:Alcoholysis  Camelina oil  Biodiesel  Operational stability  Enzyme immobilization  Structured lipids
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号