首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Neuropeptide Y is a physiological substrate of fibroblast activation protein: Enzyme kinetics in blood plasma and expression of Y2R and Y5R in human liver cirrhosis and hepatocellular carcinoma
Institution:1. Dept of Medicine, University of Padua, Italy;2. Unit of Hepatobiliary Surgery and Liver Transplantation, University of Padua, Italy;3. Dept of Laboratory Medicine, Azienda Ospedaliera, Padua, Italy;4. Dept of Biomedical Sciences, University of Padua, Italy;5. Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
Abstract:Fibroblast activation protein (FAP) is a dipeptidyl peptidase (DPP) and endopeptidase that is weakly expressed in normal adult human tissues but is greatly up-regulated in activated mesenchymal cells of tumors and chronically injured tissue. The identities and locations of target substrates of FAP are poorly defined, in contrast to the related protease DPP4. This study is the first to characterize the physiological substrate repertoire of the DPP activity of endogenous FAP present in plasma. Four substrates, neuropeptide Y (NPY), peptide YY, B-type natriuretic peptide and substance P, were analyzed by mass spectrometry following proteolysis in human or mouse plasma, and by in vivo localization in human liver tissues with cirrhosis and hepatocellular carcinoma (HCC). NPY was the most efficiently cleaved substrate of both human and mouse FAP, whereas all four peptides were efficiently cleaved by endogenous DPP4, indicating that the in vivo degradomes of FAP and DPP4 differ. All detectable DPP-specific proteolysis and C-terminal processing of these neuropeptides was attributable to FAP and DPP4, and plasma kallikrein, respectively, highlighting their combined physiological significance in the regulation of these neuropeptides. In cirrhotic liver and HCC, NPY and its receptor Y2R, but not Y5R, were increased in hepatocytes near the parenchymal–stromal interface where there is an opportunity to interact with FAP expressed on nearby activated mesenchymal cells in the stroma. These novel findings provide insights into the substrate specificity of FAP, which differs greatly from DPP4, and reveal a potential function for FAP in neuropeptide regulation within liver and cancer biology.
Keywords:Cancer  Dipeptidyl peptidase  Fibroblast activation protein  Kallikrein  Liver disease  Protease substrates
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号