首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular Mechanisms,Thermodynamics, and Dissociation Kinetics of Knob-Hole Interactions in Fibrin
Authors:Olga Kononova  Rustem I Litvinov  Artem Zhmurov  Andrey Alekseenko  Chia Ho Cheng  Silvi Agarwal  Kenneth A Marx  John W Weisel  Valeri Barsegov
Institution:From the Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854.;§Moscow Institute of Physics and Technology, Moscow Region, Russia 141700, and ;Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
Abstract:Polymerization of fibrin, the primary structural protein of blood clots and thrombi, occurs through binding of knobs ‘A’ and ‘B’ in the central nodule of fibrin monomer to complementary holes ‘a’ and ‘b’ in the γ- and β-nodules, respectively, of another monomer. We characterized the A:a and B:b knob-hole interactions under varying solution conditions using molecular dynamics simulations of the structural models of fibrin(ogen) fragment D complexed with synthetic peptides GPRP (knob ‘A’ mimetic) and GHRP (knob ‘B’ mimetic). The strength of A:a and B:b knob-hole complexes was roughly equal, decreasing with pulling force; however, the dissociation kinetics were sensitive to variations in acidity (pH 5–7) and temperature (T = 25–37 °C). There were similar structural changes in holes ‘a’ and ‘b’ during forced dissociation of the knob-hole complexes: elongation of loop I, stretching of the interior region, and translocation of the moveable flap. The disruption of the knob-hole interactions was not an “all-or-none” transition as it occurred through distinct two-step or single step pathways with or without intermediate states. The knob-hole bonds were stronger, tighter, and more brittle at pH 7 than at pH 5. The B:b knob-hole bonds were weaker, looser, and more compliant than the A:a knob-hole bonds at pH 7 but stronger, tighter, and less compliant at pH 5. Surprisingly, the knob-hole bonds were stronger, not weaker, at elevated temperature (T = 37 °C) compared with T = 25 °C due to the helix-to-coil transition in loop I that helps stabilize the bonds. These results provide detailed qualitative and quantitative characteristics underlying the most significant non-covalent interactions involved in fibrin polymerization.
Keywords:Biophysics  Fibrin  Fibrinogen  Molecular Dynamics  Protein-Protein Interactions  A:a and B:b Knob-Hole Bonds  Dissociation Kinetics  Free Energy Landscape
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号