首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Insulin Activates RSK (p90 Ribosomal S6 Kinase) to Trigger a New Negative Feedback Loop That Regulates Insulin Signaling for Glucose Metabolism
Authors:Nicolas Smadja-Lamère  Michael Shum  Paul Déléris  Philippe P Roux  Jun-Ichi Abe  André Marette
Institution:From the Quebec Heart and Lung Institute, Laval University, 2705 Chemin Ste-Foy, Ste-Foy (Quebec) G1V4G5, Canada.;the §Institute for Research in Immunology and Cancer (IRIC) and ;Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, and ;the University of Rochester Medical Center, ACVRI, New York 14642
Abstract:We previously demonstrated that the mTORC1/S6K1 pathway is activated by insulin and nutrient overload (e.g. amino acids (AA)), which leads to the inhibition of the PI3K/Akt pathway via the inhibitory serine phosphorylation of IRS-1, notably on serine 1101 (Ser-1101). However, even in the absence of AA, insulin can still promote IRS-1 Ser-1101 phosphorylation by other kinases that remain to be fully characterized. Here, we describe a new negative regulator of IRS-1, the p90 ribosomal S6 kinase (RSK). Computational analyses revealed that Ser-1101 within IRS-1 falls into the consensus motif of RSK. Moreover, recombinant RSK phosphorylated IRS-1 C-terminal fragment on Ser-1101, which was prevented by mutations of this site or when a kinase-inactive mutant of RSK was used. Using antibodies directed toward the phosphorylation sites located in the activation segment of RSK (Ser-221 or Ser-380), we found that insulin activates RSK in L6 myocytes in the absence of AA overload. Inhibition of RSK using either the pharmacological inhibitor BI-D1870 or after adenoviral expression of a dominant negative RSK1 mutant (RSK1-DN) showed that RSK selectively phosphorylates IRS-1 on Ser-1101. Accordingly, expression of the RSK1-DN mutant in L6 myocytes and FAO hepatic cells improved insulin action on glucose uptake and glucose production, respectively. Furthermore, RSK1 inhibition prevented insulin resistance in L6 myocytes chronically exposed to high glucose and high insulin. These results show that RSK is a novel regulator of insulin signaling and glucose metabolism and a potential mediator of insulin resistance, notably through the negative phosphorylation of IRS-1 on Ser-1101.
Keywords:Akt  Glucose Metabolism  Hepatocyte  Insulin Resistance  Muscle  Rsk  IRS-1  Serine Phosphorylation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号