首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The photochemical reactions of bacterial sensory rhodopsin-I. Flash photolysis study in the one microsecond to eight second time window.
Authors:R A Bogomolni and  J L Spudich
Institution:Cardiovascular Research Institute, University of California, San Francisco 94143.
Abstract:Halobacterium halobium Flx mutants are deficient in bacteriorhodopsin (bR) and halorhodopsin (hR). Such strains are phototactic and the light signal detectors are two additional retinal pigments, sensory rhodopsins I and II (sR-I and sR-II), which absorb maximally at 587 and 480 nm, respectively. A retinal-deficient Flx mutant, Flx5R, overproduces sR-I-opsin and does not show any photochemical activity other than that of sR-I after the pigment is regenerated by addition of all-trans retinal. Using native membrane vesicles from this strain, we have resolved a new photointermediate in the sR-I photocycle between the early bathointermediate S610 and the later intermediate S373. The new form, S560, resembles the L intermediate of bR in its position in the photoreaction cycle, its relatively low extinction, and its moderate blue shift. It forms with a half-time of approximately 90 microseconds at 21 degrees C, concomitant with the decay of S610. Its decay with a half-time of 270 microseconds parallels the appearance of S373. From a data set consisting of laser flash-induced absorbance changes (300 ns, 580-nm excitation) measured at 24 wavelengths from 340 to 720 nm in a time window spanning 1 microsecond to 8 s we have calculated the spectra of the photocycle intermediates assuming a unidirectional, unbranched reaction scheme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号