首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enhanced chrysene degradation by halotolerant Achromobacter xylosoxidans using Response Surface Methodology
Authors:Ghevariya Chirag M  Bhatt Jwalant K  Dave Bharti P
Institution:Department of Life Sciences, Bhavnagar University, Bhavnagar, Gujarat, India.
Abstract:Degradation of chrysene, a four ring High Molecular Weight (HMW) Polycyclic Aromatic Hydrocarbon (PAH) is of intense environmental interest, being carcinogenic, teratogenic and mutagenic. Multiple PAH degrading halotolerant Achromobacter xylosoxidans was isolated from crude oil polluted saline site. Response Surface Methodology (RSM) using Central Composite Design (CCD) of Bushnell-Haas medium components was successfully employed for optimization resulting 40.79% chrysene degradation on 4th day. The interactions between variables as chrysene and glucose concentrations, pH and inoculum size on degradation were examined by RSM. Under optimum conditions, A. xylosoxidans exhibited 85.96% chrysene degradation on 5th day. The optimum values predicted by RSM were confirmed through confirmatory experiments. It was also noted that pH and glucose as co-substrate play a dynamic role in enhancement of chrysene degradation. Hence, A. xylosoxidans can be further used for subsequent microcosm and in situ experiments for its potential to remediate PAH contaminated saline and non-saline soils.
Keywords:Achromobacter xylosoxidans  Response Surface Methodology  Chrysene  PAH degradation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号