首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation
Authors:Wilson Jeffrey J  Matsushita Osamu  Okabe Akinobu  Sakon Joshua
Institution:Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
Abstract:The crystal structure of a collagen-binding domain (CBD) with an N-terminal domain linker from Clostridium histolyticum class I collagenase was determined at 1.00 A resolution in the absence of calcium (1NQJ) and at 1.65 A resolution in the presence of calcium (1NQD). The mature enzyme is composed of four domains: a metalloprotease domain, a spacing domain and two CBDs. A 12-residue-long linker is found at the N-terminus of each CBD. In the absence of calcium, the CBD reveals a beta-sheet sandwich fold with the linker adopting an alpha-helix. The addition of calcium unwinds the linker and anchors it to the distal side of the sandwich as a new beta-strand. The conformational change of the linker upon calcium binding is confirmed by changes in the Stokes and hydrodynamic radii as measured by size exclusion chromatography and by dynamic light scattering with and without calcium. Furthermore, extensive mutagenesis of conserved surface residues and collagen-binding studies allow us to identify the collagen-binding surface of the protein and propose likely collagen-protein binding models.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号