首页 | 本学科首页   官方微博 | 高级检索  
     


Generalized-ensemble algorithms for molecular simulations of biopolymers.
Authors:A Mitsutake  Y Sugita  Y Okamoto
Affiliation:Department of Theoretical Studies, Institute for Molecular Science, Okazaki, Aichi, Japan.
Abstract:In complex systems with many degrees of freedom such as peptides and proteins, there exists a huge number of local-minimum-energy states. Conventional simulations in the canonical ensemble are of little use, because they tend to get trapped in states of these energy local minima. A simulation in generalized ensemble performs a random walk in potential energy space and can overcome this difficulty. From only one simulation run, one can obtain canonical-ensemble averages of physical quantities as functions of temperature by the single-histogram and/or multiple-histogram reweighting techniques. In this article we review uses of the generalized-ensemble algorithms in biomolecular systems. Three well-known methods, namely, multicanonical algorithm, simulated tempering, and replica-exchange method, are described first. Both Monte Carlo and molecular dynamics versions of the algorithms are given. We then present three new generalized-ensemble algorithms that combine the merits of the above methods. The effectiveness of the methods for molecular simulations in the protein folding problem is tested with short peptide systems.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号