首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tolerance of Sargassum thunbergii germlings to thermal, osmotic and desiccation stress
Authors:Shao Hua ChuQuan Sheng Zhang  Shi Kai LiuYong Zheng Tang  Shu Bao ZhangZhi Cheng Lu  Yong Qiang Yu
Institution:a Ocean School, Yantai University, Yantai 264005, PR China
b Fish Molecular Genetics and Biotechnology Laboratory, Auburn University, Auburn, 36849 AL, USA
Abstract:The construction of artificial seaweed beds in the intertidal zone is a challenge due to extreme levels of physical stress. In order to provide a basis for the construction using the dispersal of microscopic juveniles, a three-way factorial experimental design was used to evaluate the tolerance of Sargassum thunbergii germlings shortly released from fertile thalli to temperature, salinity and desiccation in this study. Results revealed that temperature, salinity and desiccation significantly affected the growth and survival of germlings. Germlings showed rapid growth with relative growth rate (RGR, % day−1) over 16% when cultured at 25 °C and full immersion in normal seawater. Although growths of germlings subjected to moderate conditions were significantly inhibited, RGRs over 13% were obtained. The RGRs of germlings below 10% were observed only at 35 °C and 9 h desiccation treatments. In comparison to growth, survival was less affected by physical stress. Germlings showed low mortalities below 10% under appropriate conditions (25 °C and 30 °C combined with full immersion), and below 60% under moderate conditions, by the end of experiment. However, the mortality rates increased to over 90% under extreme conditions (9 h desiccation and 35 °C combined with full immersion in salinity of 12). These results showed that S. thunbergii germlings had high tolerance to physical stresses. In addition to the main effects, both two-way and three-way interactions between temperature, salinity and desiccation were significant. Based on the magnitude of effect, desiccation was the predominant factor affecting both growth and survival. According to the results, construction of artificial tanks in natural habitat to minimize desiccation may be an effective strategy for S. thunbergii restoration using germlings.
Keywords:Sargassum thunbergii  Germling  Tolerance  Physical stress
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号