首页 | 本学科首页   官方微博 | 高级检索  
     


Role of N-Linked Glycans in the Functions of Hepatitis C Virus Envelope Proteins Incorporated into Infectious Virions
Authors:Fran?ois Helle  Gabrielle Vieyres  Laure Elkrief  Costin-Ioan Popescu  Czeslaw Wychowski  Véronique Descamps  Sandrine Castelain  Philippe Roingeard  Gilles Duverlie  Jean Dubuisson
Affiliation:Institut Pasteur de Lille, Center of Infection and Immunity of Lille (CIIL), and Inserm U1019, F-59019 Lille, CNRS UMR8204, F-59021 Lille, and Université Lille Nord de France, F-59000 Lille, France,1. Laboratoire de Virologie, Centre Hospitalier Universitaire, Amiens, France,2. Institute of Biochemistry, Bucharest, Romania,3. Inserm U966, Université François Rabelais and CHRU de Tours, Tours, France4.
Abstract:Hepatitis C virus (HCV) envelope glycoproteins are highly glycosylated, with generally 4 and 11 N-linked glycans on E1 and E2, respectively. Studies using mutated recombinant HCV envelope glycoproteins incorporated into retroviral pseudoparticles (HCVpp) suggest that some glycans play a role in protein folding, virus entry, and protection against neutralization. The development of a cell culture system producing infectious particles (HCVcc) in hepatoma cells provides an opportunity to characterize the role of these glycans in the context of authentic infectious virions. Here, we used HCVcc in which point mutations were engineered at N-linked glycosylation sites to determine the role of these glycans in the functions of HCV envelope proteins. The mutants were characterized for their effects on virus replication and envelope protein expression as well as on viral particle secretion, infectivity, and sensitivity to neutralizing antibodies. Our results indicate that several glycans play an important role in HCVcc assembly and/or infectivity. Furthermore, our data demonstrate that at least five glycans on E2 (denoted E2N1, E2N2, E2N4, E2N6, and E2N11) strongly reduce the sensitivity of HCVcc to antibody neutralization, with four of them surrounding the CD81 binding site. Altogether, these data indicate that the glycans associated with HCV envelope glycoproteins play roles at different steps of the viral life cycle. They also highlight differences in the effects of glycosylation mutations between the HCVpp and HCVcc systems. Furthermore, these carbohydrates form a “glycan shield” at the surface of the virion, which contributes to the evasion of HCV from the humoral immune response.Hepatitis C virus (HCV) is a single-stranded positive-sense RNA virus that causes serious liver diseases in humans (31). More than 170 million people worldwide are seropositive for HCV and at risk for developing cirrhosis and hepatocellular carcinoma (50). HCV is a small, enveloped virus that belongs to the Hepacivirus genus in the Flaviviridae family (31). Its genome encodes a single polyprotein precursor of about 3,000-amino-acid residues that is cleaved co- and posttranslationally by cellular and viral proteases to yield at least 10 mature products (31). The two envelope glycoproteins, E1 and E2, are released from the polyprotein by signal peptidase cleavages. These two proteins assemble as noncovalent heterodimers, which are retained mainly in the endoplasmic reticulum (ER) (36), and they are found as large disulfide-linked oligomers on the surfaces of HCV particles (46). HCV glycoproteins are involved in the entry process, and since they are present on the surfaces of viral particles, these proteins are the targets of neutralizing antibodies (4, 21).E1 and E2 generally contain 4 and 11 N-glycosylation sites, respectively, all of which have been shown to be modified by glycans (19). Despite variability in HCV envelope glycoprotein sequences, the four glycosylation sites of E1 and nine of E2 are highly conserved, suggesting that the glycans associated with these proteins play an essential role in the HCV life cycle (22). Using retroviral particles pseudotyped with genotype 1a (H strain) HCV envelope glycoproteins (HCVpp), recent studies have determined the potential roles played by these glycans in protein folding, HCV entry, and protection against neutralization (14, 19, 22). Indeed, the lack of glycan E1N1, E1N4, E2N8, or E2N10 strongly affects the incorporation of HCV glycoproteins into HCVpp, suggesting that these glycans are important for correct protein folding (19). Furthermore, mutation of glycosylation sites E2N2 or E2N4 alters HCVpp infectivity despite normal incorporation into pseudotyped particles, suggesting a role for the corresponding glycans in viral entry, at least in this model system (19). Finally, glycans at positions E2N1, E2N6, and E2N11 were shown to reduce the sensitivity of HCVpp to antibody neutralization as well as access of the CD81 coreceptor to its binding site on E2, suggesting that glycans also contribute to HCV evasion of the humoral immune response (14, 22).It has recently been proposed that targeting glycans could be a promising approach to inhibiting viral infection (1). Indeed, HCV, as well as several other viruses with highly glycosylated envelope proteins, can be inhibited by carbohydrate binding agents such as cyanovirin-N and pradimicin A (1, 7, 23). Furthermore, resistance against drugs that target glycans is likely to develop and will probably result in mutations at some glycosylation sites (3, 52). However, since glycans associated with viral envelope proteins play an important role in the viral life cycle, adaptation of viruses to the selective pressure of carbohydrate-binding agents will most likely come at a replicative cost to the virus (2).Although the role of HCV glycans has been studied using mutant recombinant HCV envelope glycoproteins incorporated into HCVpp, these particles do not recapitulate all the functions of HCV envelope proteins. Cell culture-derived virus (HCVcc) (32, 49, 55) assembles in an ER-derived compartment in association with very low density lipoproteins (17, 26), whereas HCVpp are assembled in a post-Golgi compartment and are not associated with lipoproteins (44). Importantly, this leads to differences between HCVpp and HCVcc in the oligomerization of the envelope glycoproteins (46). It is also important to note that the carbohydrate composition of viral glycoproteins can differ when the same virus is grown in different cell lines (13). Thus, HCVpp that are produced in 293T cells are not the most appropriate model for glycosylation studies, since HCV tropism is restricted to the liver. Furthermore, differences in envelope protein glycosylation have been observed between HCVpp and HCVcc particles (46). Differences in some HCV envelope protein functions were also observed when the HCVpp and HCVcc systems were compared (28, 29, 42, 43). The development of the HCVcc system provides, therefore, the opportunity to characterize the role of E1/E2-associated glycans in the context of authentic infectious virions. Here, we analyzed the role of E1/E2 glycans by introducing point mutations at N-linked glycosylation sites in the context of the HCVcc system. The effects of these mutations on virus replication, particle secretion, infectivity, and sensitivity to neutralizing antibodies were investigated. Our results demonstrate that several glycans play an important role in HCVcc assembly and/or infectivity and reduce access of neutralizing antibodies to their epitopes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号