首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of Bacterial Community Structure in a Drinking Water Distribution System during an Occurrence of Red Water
Authors:Dong Li  Zheng Li  Jianwei Yu  Nan Cao  Ruyin Liu  Min Yang
Affiliation:State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China,1. Water Quality Monitoring Center, Beijing Waterworks Group, Beijing 100085, China2.
Abstract:The role of bacteria in the occasional emergence of red water, which has been documented worldwide, has yet to be determined. To better understand the mechanisms that drive occurrences of red water, the bacterial community composition and the relative abundance of several functional bacterial groups in a water distribution system of Beijing during a large-scale red water event were determined using several molecular methods. Individual clone libraries of the 16S rRNA gene were constructed for three red water samples and one sample of normal water. Beta-, Alpha-, and Gammaproteobacteria comprised the major bacterial communities in both red water and normal water samples, in agreement with previous reports. A high percentage of red water clones (25.2 to 57.1%) were affiliated with or closely related to a diverse array of iron-oxidizing bacteria, including the neutrophilic microaerobic genera Gallionella and Sideroxydans, the acidophilic species Acidothiobacillus ferrooxidans, and the anaerobic denitrifying Thermomonas bacteria. The genus Gallionella comprised 18.7 to 28.6% of all clones in the three red water libraries. Quantitative real-time PCR analysis showed that the 16S rRNA gene copy concentration of Gallionella spp. was between (4.1 ± 0.9) × 107 (mean ± standard deviation) and (1.6 ± 0.3) × 108 per liter in red water, accounting for 13.1% ± 2.9% to 17.2% ± 3.6% of the total Bacteria spp. in these samples. By comparison, the percentages of Gallionella spp. in the normal water samples were 0.1% or lower (below the limit of detection), suggesting an important role of Gallionella spp. in the formation of red water.On occasion, extensive precipitation of iron oxides in drinking water distribution systems manifests as red water at the tap and results in serious deterioration of water quality, with undesirable esthetic and health effects (18, 40, 46). The abundance of ferrous iron in source water or the acceleration of corrosion of iron pipelines after the loosening of chemical and microbial films from the interior surfaces of distribution systems might be the sources of iron oxides in red water. Switching of water sources has been observed to be associated with red water due to disruption of the delicate chemical equilibrium in water supply systems (18). High concentrations of anions, particularly sulfate ions, have been recognized as a causative agent of red water in many cases, reflected in high values on indices such as the Larson-Skold index (18, 29). Other physicochemical factors, such as insufficient disinfection residue, extended hydraulic retention time, low levels of dissolved oxygen, high temperature, low alkalinity, and high chloride concentration, have also been implicated in the emergence of red water (18, 46).In addition to physicochemical factors, microorganisms may also participate in the unique phenomenon of red water. Drinking water distribution systems are a unique niche for microorganisms, despite oligotrophic conditions and the presence of free or combined chlorine (3, 18). Phylogenetically diverse bacterial groups can inhabit the bulk water or biofilms attached to pipes. Culture-based and independent analyses have revealed that members of the class Proteobacteria, including the Alpha-, Beta-, and Gammaproteobacteria, are typically the most abundant bacterial group in water distribution systems, followed by bacterial phyla such as Actinobacteria, Firmicutes, and Bacteroidetes (13, 38). Bacteria inhabiting distribution systems mainly fill functions of diverse carbon source utilization and nitrification, as well as microbial corrosion (3). Meanwhile, during periods of red water, abundant ferrous iron in the bulk water creates favorable conditions for the growth of bacteria in the distribution systems, as this iron scavenges residual chlorine and serves as an energy source for iron-oxidizing bacteria. Some neutrophilic iron oxidizers, such as Gallionella spp. and Leptothrix ochracea, which have occasionally been observed in association with red water events because of their distinct morphology, can promote the precipitation of iron oxides by converting ferrous iron to ferric iron (9, 46). As very little energy can be generated during the oxidation of ferrous to ferric iron, a large quantity of iron needs to be oxidized to support the growth of lithotrophic iron oxidizers. It has been calculated that the ratio of iron to the weight of bacterial cell material could be up to approximately 450 to 500, assuming that the oxidation of ferrous iron provides the sole energy for the synthesis of cell material (9). Emerson et al. have found that the oxidation rate of ferrous iron could be up to 600 to 960 nmol per h per cm3 of mat material that contained up to 109 bacterial cells, most of which were iron oxidizers like Gallionella spp. and Leptothrix ochracea, and the oxidation rate of ferrous iron by iron oxidizers could be as high as four times that of dissolved oxygen (15). These neutrophilic iron oxidizers have been even utilized to remove iron from groundwater by passage of preaerated water through sand filters during drinking water treatment (24, 36). Thus, iron-oxidizing species might play an important role in red water events. With the exception of specific neutrophilic iron oxidizers (e.g., Gallionella spp. and Leptothrix ochracea), the whole microbial community composition in red water and the presence of potentially functional groups, including neutrophilic iron-oxidizing bacteria in red water, is poorly defined, possibly because the appearance of this unique phenomenon in real distribution systems is so irregular. To better understand the mechanisms that drive the emergence of red water, the bacterial community composition and the relative abundance of several functional bacterial groups in a water distribution system of Beijing during a large-scale red water event were determined using several molecular methods. The results of this comprehensive investigation of the biological component of red water will provide valuable information for those managing red water events in water distribution systems.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号