首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Crystal Structures of a Populus tomentosa 4-Coumarate:CoA Ligase Shed Light on Its Enzymatic Mechanisms
Authors:Yonglin Hu  Ying Gai  Lei Yin  Xiaoxue Wang  Chunyan Feng  Lei Feng  Defeng Li  Xiang-Ning Jiang  Da-Cheng Wang
Institution:aNational Lab of Biomacromoleucles, Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China;bNational Engineering Laboratory of Tree Breedings, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People’s Republic of China
Abstract:4-Coumaric acid:CoA ligase (4CL) is the central enzyme of the plant-specific phenylpropanoid pathway. It catalyzes the synthesis of hydroxycinnamate-CoA thioesters, the precursors of lignin and other important phenylpropanoids, in two-step reactions involving the formation of hydroxycinnamate-AMP anhydride and then the nucleophilic substitution of AMP by CoA. In this study, we determined the crystal structures of Populus tomentosa 4CL1 in the unmodified (apo) form and in forms complexed with AMP and adenosine 5′-(3-(4-hydroxyphenyl)propyl)phosphate (APP), an intermediate analog, at 2.4, 2.5, and 1.9 Å resolution, respectively. 4CL1 consists of two globular domains connected by a flexible linker region. The larger N-domain contains a substrate binding pocket, while the C-domain contains catalytic residues. Upon binding of APP, the C-domain rotates 81° relative to the N-domain. The crystal structure of 4CL1-APP reveals its substrate binding pocket. We identified residues essential for catalytic activities (Lys-438, Gln-443, and Lys-523) and substrate binding (Tyr-236, Gly-306, Gly-331, Pro-337, and Val-338) based on their crystal structures and by means of mutagenesis and enzymatic activity studies. We also demonstrated that the size of the binding pocket is the most important factor in determining the substrate specificities of 4CL1. These findings shed light on the enzymatic mechanisms of 4CLs and provide a solid foundation for the bioengineering of these enzymes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号