首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium Flux between the Endoplasmic Reticulum and Mitochondrion Contributes to Poliovirus-Induced Apoptosis
Authors:Cynthia Brisac  Fran?ois Téoulé  Arnaud Autret  Isabelle Pelletier  Florence Colbère-Garapin  Catherine Brenner  Christophe Lemaire  Bruno Blondel
Institution:Institut Pasteur, Unité de Biologie des Virus Entériques, 25 rue du Dr Roux, 75015 Paris, France,1. INSERM U994, Paris, France,2. Université Versailles Saint-Quentin, Versailles, France,3. INSERM U769, Signalisation et Physiopathologie Cardiaque, Châtenay Malabry, France4.
Abstract:We show that poliovirus (PV) infection induces an increase in cytosolic calcium (Ca2+) concentration in neuroblastoma IMR5 cells, at least partly through Ca2+ release from the endoplasmic reticulum lumen via the inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) channels. This leads to Ca2+ accumulation in mitochondria through the mitochondrial Ca2+ uniporter and the voltage-dependent anion channel (VDAC). This increase in mitochondrial Ca2+ concentration in PV-infected cells leads to mitochondrial dysfunction and apoptosis.Poliovirus (PV), the prototype member of the Picornaviridae family, is the etiological agent of paralytic poliomyelitis (26, 27). This acute human disease of the central nervous system results from the destruction of motor neurons associated with PV replication. In PV-infected mice, motor neurons die through apoptosis (16). However, the mechanisms involved are poorly understood (5).Apoptosis is an active cell death process triggered by various stimuli, including viral infections (18). This process leads to DNA fragmentation and is triggered by two main pathways (22): (i) the extrinsic pathway, mediated by the activation of cell surface death receptors such as Fas/CD95, and (ii) the intrinsic pathway, characterized notably by mitochondrial membrane permeabilization (MMP). In many models, this process implies a loss of mitochondrial transmembrane potential (Δψm) and the release of proapoptotic molecules, including cytochrome c, from the mitochondrial intermembrane space into the cytosol. The apoptotic program initiated by PV infection has been shown to involve mitochondrial dysfunction in several cell lines (2-4, 17).The intrinsic pathway also can originate from the endoplasmic reticulum (ER) (30). The ER participates in protein synthesis and folding, cellular responses to stress, and intracellular calcium (Ca2+) homeostasis. Nevertheless, under stress conditions, it may induce apoptosis via several different mechanisms, one of which involves ER cross-talk with mitochondria, mediated by Ca2+ release from ER stores through the inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) channels (7, 12, 15). Several recent studies have identified Ca2+ signaling as a key cellular target for viral infection (for a review, see reference 8). Upon PV infection, cells display an increase in cytosolic Ca2+ concentration (20). Phospholipase C also is activated, leading to an increase in IP3 concentration in PV-infected cells (19), potentially accounting for the observed increase in cytosolic Ca2+ concentration. However, the role of Ca2+ efflux from the ER in PV-induced apoptosis has yet to be studied.Here, we postulated that an increase in cytosolic Ca2+ following PV infection can have an impact on cell fate and investigated the cellular response in terms of mitochondrial function and apoptosis in neuroblastoma IMR5 cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号