首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Vacuolar Cation/H+ Antiporters of Saccharomyces cerevisiae
Authors:Olivier Cagnac  Maria Nieves Aranda-Sicilia  Marina Leterrier  Maria-Pilar Rodriguez-Rosales  Kees Venema
Institution:From the Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estacion Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado 419, E-18080 Granada, Spain
Abstract:We previously demonstrated that Saccharomyces cerevisiae vnx1Δ mutant strains displayed an almost total loss of Na+ and K+/H+ antiporter activity in a vacuole-enriched fraction. However, using different in vitro transport conditions, we were able to reveal additional K+/H+ antiporter activity. By disrupting genes encoding transporters potentially involved in the vnx1 mutant strain, we determined that Vcx1p is responsible for this activity. This result was further confirmed by complementation of the vnx1Δvcx1Δ nhx1Δ triple mutant with Vcx1p and its inactivated mutant Vcx1p-H303A. Like the Ca2+/H+ antiporter activity catalyzed by Vcx1p, the K+/H+ antiporter activity was strongly inhibited by Cd2+ and to a lesser extend by Zn2+. Unlike as previously observed for NHX1 or VNX1, VCX1 overexpression only marginally improved the growth of yeast strain AXT3 in the presence of high concentrations of K+ and had no effect on hygromycin sensitivity. Subcellular localization showed that Vcx1p and Vnx1p are targeted to the vacuolar membrane, whereas Nhx1p is targeted to prevacuoles. The relative importance of Nhx1p, Vnx1p, and Vcx1p in the vacuolar accumulation of monovalent cations will be discussed.
Keywords:Exchangers  Membrane Isolation  Mutant  Potassium Transport  Yeast  Ion Homeostasis  Vacuolar Membrane
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号