首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of an Archaeal Medium-Chain Acyl Coenzyme A Synthetase from Methanosarcina acetivorans
Authors:Yu Meng  Cheryl Ingram-Smith  Leroy L. Cooper  Kerry S. Smith
Affiliation:Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634
Abstract:Short- and medium-chain acyl coenzyme A (acyl-CoA) synthetases catalyze the formation of acyl-CoA from an acyl substrate, ATP, and CoA. These enzymes catalyze mechanistically similar two-step reactions that proceed through an enzyme-bound acyl-AMP intermediate. Here we describe the characterization of a member of this enzyme family from the methane-producing archaeon Methanosarcina acetivorans. This enzyme, a medium-chain acyl-CoA synthetase designated MacsMa, utilizes 2-methylbutyrate as its preferred substrate for acyl-CoA synthesis but cannot utilize acetate and thus cannot catalyze the first step of acetoclastic methanogenesis in M. acetivorans. When propionate or other less favorable acyl substrates, such as butyrate, 2-methylpropionate, or 2-methylvalerate, were utilized, the acyl-CoA was not produced or was produced at reduced levels. Instead, acyl-AMP and PPi were released in the absence of CoA, whereas in the presence of CoA, the intermediate was broken down into AMP and the acyl substrate, which were released along with PPi. These results suggest that although acyl-CoA synthetases may have the ability to utilize a broad range of substrates for the acyl-adenylate-forming first step of the reaction, the intermediate may not be suitable for the thioester-forming second step. The MacsMa structure has revealed the putative acyl substrate- and CoA-binding pockets. Six residues proposed to form the acyl substrate-binding pocket, Lys256, Cys298, Gly351, Trp259, Trp237, and Trp254, were targeted for alteration. Characterization of the enzyme variants indicates that these six residues are critical in acyl substrate binding and catalysis, and even conservative alterations significantly reduced the catalytic ability of the enzyme.AMP-forming acetyl coenzyme A (acetyl-CoA) synthetase (Acs; acetate:CoA ligase [AMP forming], EC 6.2.1.1), which catalyzes the activation of acetate to acetyl-CoA, is a member of the acyl-adenylate-forming enzyme superfamily (8), which consists of acyl- and aryl-CoA ligases, nonribosomal peptide synthetases that mediate the synthesis of peptide and polyketide secondary metabolites, such as gramicidin and tyrocidine, and the enzymes firefly luciferase and α-aminoadipate reductase. Although these enzymes share the property of forming an acyl-adenylate intermediate and are structurally related, they share limited sequence homology and catalyze unrelated reactions in which the intermediate serves different functions for different members of this enzyme family.A two-step mechanism for Acs (equations 1 and 2) in which the reaction proceeds through an acetyl-AMP intermediate has been proposed based on evidence including detection of an enzyme-bound acetyl-AMP (2-4, 38): (1) (2)In the CoA-dependent first step of the reaction, an enzyme-bound acetyl-AMP intermediate is formed from acetate and ATP, and inorganic pyrophosphate (PPi) is released. In the second step, the acetyl group is transferred to the sulfhydryl group of CoA and AMP is released. Other short- (Sacs) and medium-chain acyl-CoA synthetases (Macs) follow a similar reaction mechanism using acyl substrates other than acetate (8, 15).In the 2.3-Å structure of trimeric Saccharomyces cerevisiae Acs1 in a binary complex with AMP (19), the C-terminal domain is positioned away from the N-terminal domain in a conformation for catalysis of the first step of the reaction (equation 1). The 1.75-Å structure of the monomeric Salmonella enterica Acs (AcsSe) (13) in complex with both CoA and adenosine-5′-propylphosphate, an inhibitor of the related propionyl-CoA synthetase (12, 15), which mimics the acetyl-adenylate intermediate, reveals that the C-terminal domain of Acs is rotated approximately 140° toward the N-terminal domain to form the complete active site for catalysis of the second half-reaction (equation 2). In this orientation, the CoA thiol is properly positioned for nucleophilic attack on the acetyl group. In structure/function studies of 4-chlorobenzoate:CoA ligase (CBAL), a distant member of the acyl- and aryl-CoA synthetase subfamily of the acyl-adenylate-forming enzyme superfamily, Wu et al. (39) and Reger et al. (28) provide evidence that PPi produced in the first step of the reaction dissociates from the enzyme before the switch from the first conformation to the second conformation required for CoA binding and catalysis of the second step of the reaction.Acs and Sacs/Macs are widespread in all three domains of life and play a key role in archaea, as suggested by the finding that several thermophilic archaea have multiple open reading frames (ORFs) (up to seven) that encode putative Sacs or Macs (33). The chemolithoautotrophic methanoarchaeon Methanothermobacter thermautotrophicus has two ORFs with high identity to Acs and a third ORF that is likely to encode a Macs. M. thermautotrophicus Acs1 (Acs1Mt) has been biochemically and kinetically characterized, has been shown to have a strong preference for acetate as the acyl substrate, and can also utilize propionate but not butyrate (16, 17).Methanosarcina and Methanosaeta are the only two methanoarchaea isolated that are able to utilize acetate as substrate for methane production. Unlike Methanosaeta species, which utilize Acs for catalyzing the first step of methanogenesis (18, 34), Methanosarcina species employ the acetate kinase-phosphotransacetylase pathway for activation of acetate to acetyl-CoA, and an Acs activity has not been observed in Methanosarcina (1, 23, 30, 32). Surprisingly, an Acs-related sequence was identified in the Methanosarcina acetivorans genome. Here we describe the kinetic characterization this enzyme, designated MacsMa, and show that it utilizes longer acyl substrates than Acs. The preferred acyl substrate was shown to be 2-methylbutyrate, and 2-methylbutyryl-CoA, AMP, and PPi were the products of the reaction, as expected. However, when propionate was used as the acyl substrate, propionyl-CoA was not produced. Instead, in the absence of CoA, propionyl-AMP and PPi were released, whereas in the presence of CoA, the propionyl-AMP intermediate was broken down into AMP and propionate and released along with PPi. Intermediate results were obtained with other acyl substrates, with both acyl-CoA and acyl-AMP production observed.The 2.1-Å crystal structure of MacsMa (31), determined in the absence of any substrate, revealed the enzyme to be in a conformation similar to that of the S. enterica Acs (13) with respect to the position of the C-terminal domain. Through inspection of the MacsMa structure and alignment of Acs, Sacs, and Macs sequences, we identified six residues that form the putative acyl substrate-binding pocket. Individual alterations at these residues dramatically diminished enzyme activity and indicate that the acyl substrate-binding pocket of MacsMa has a very precise architecture that cannot be perturbed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号