首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of 5-Chloro-5-Deoxy-d-Ribose 1-Dehydrogenase in Chloroethylmalonyl Coenzyme A Biosynthesis: SUBSTRATE AND REACTION PROFILING*
Authors:Andrew J Kale  Ryan P McGlinchey  Bradley S Moore
Institution:From the Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and ;§Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
Abstract:SalM is a short-chain dehydrogenase/reductase enzyme from the marine actinomycete Salinispora tropica that is involved in the biosynthesis of chloroethylmalonyl-CoA, a novel halogenated polyketide synthase extender unit of the proteasome inhibitor salinosporamide A. SalM was heterologously overexpressed in Escherichia coli and characterized in vitro for its substrate specificity, kinetics, and reaction profile. A sensitive real-time 13C NMR assay was developed to visualize the oxidation of 5-chloro-5-deoxy-d-ribose to 5-chloro-5-deoxy-d-ribono-γ-lactone in an NAD+-dependent reaction, followed by spontaneous lactone hydrolysis to 5-chloro-5-deoxy-d-ribonate. Although short-chain dehydrogenase/reductase enzymes are widely regarded as metal-independent, a strong divalent metal cation dependence for Mg2+, Ca2+, or Mn2+ was observed with SalM. Oxidative activity was also measured with the alternative substrates d-erythrose and d-ribose, making SalM the first reported stereospecific non-phosphorylative ribose 1-dehydrogenase.
Keywords:Bacteria  Carbohydrate Biosynthesis  Dehydrogenase  Enzyme Catalysis  NAD  NMR
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号