首页 | 本学科首页   官方微博 | 高级检索  
     


A TRAP Transporter for Pyruvate and Other Monocarboxylate 2-Oxoacids in the Cyanobacterium Anabaena sp. Strain PCC 7120
Authors:Rafael Pernil  Antonia Herrero  Enrique Flores
Affiliation:Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
Abstract:In the cyanobacterium Anabaena sp. strain PCC 7120, open reading frames (ORFs) alr3026, alr3027, and all3028 encode a tripartite ATP-independent periplasmic transporter (TRAP-T). Wild-type filaments showed significant uptake of [14C]pyruvate, which was impaired in the alr3027 and all3028 mutants and was inhibited by several monocarboxylate 2-oxoacids, identifying this TRAP-T system as a pyruvate/monocarboxylate 2-oxoacid transporter.The tripartite ATP-independent periplasmic transporter (TRAP-T) family of proteins (family 2.A.56 in the transporter classification database [19]) comprises transporters that consist of three components: a small membrane protein usually bearing 4 transmembrane segments (TMSs), a large membrane protein usually bearing 12 TMSs that is the membrane translocator, and a periplasmic substrate binding protein (10). The TRAP transporters use the energy of an electrochemical ion gradient to drive uphill substrate transport (7, 14). TRAP-T family members are widely present in bacteria and archaea, but only a few substrates, including different types of carboxylates, have been identified for them (20). In vitro binding analyses with the periplasmic solute binding proteins RRC01191 from Rhodobacter capsulatus (20) and TakP from Rhodobacter sphaeroides (8) have shown that they bind monocarboxylate 2-oxoacids, including pyruvate. Additionally, pyruvate induces the TRAP-T periplasmic solute binding protein SMb21353 in Sinorhizobium meliloti strain 1021 (13). We are not aware, however, of any study showing a direct role of any of these proteins in pyruvate transport in vivo.Cyanobacteria are a morphologically diverse group of photoautotrophic bacteria that includes unicellular and multicellular (filamentous) organisms (18). Most cyanobacteria can use ammonium or nitrate ions as nitrogen sources, and some can also assimilate urea or fix atmospheric N2 (5). Some filamentous cyanobacteria fix N2 in differentiated cells called heterocysts that are formed under combined nitrogen deprivation (6). A TRAP transporter is involved in sodium-dependent glutamate uptake in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 (17). It is composed of proteins GtrA and GtrB (small and large membrane subunits, respectively) and GtrC (periplasmic substrate binding protein). A cluster of open reading frames (ORFs), alr3026, alr3027, and all3028, encoding proteins similar to TRAP-T proteins, is found in the genome of the filamentous, heterocyst-forming Anabaena sp. strain PCC 7120 (9). The proteins are Alr3026, with 4 predicted TMSs; Alr3027, with 13 predicted TMSs (however, the N-terminal TMS is a predicted signal peptide that could be removed, producing a mature protein of 12 TMSs); and All3028, a predicted periplasmic solute binding protein. Whereas the two membrane proteins are most similar to proteins of the Synechocystis Gtr glutamate transporter (Alr3026 shares 63% identity with GtrA, and Alr3027, 77% identity with GtrB), the periplasmic solute binding protein, All3028, is more similar to Rhodobacter capsulatus RRC01191 (47% identity) and Rhodobacter sphaeroides TakP (49% identity) than to Synechocystis GtrC (about 18% identity in a 300-amino-acid overlap). It was of interest, therefore, to determine the substrate(s) for this Anabaena transporter, which we approached by mutation and transport analysis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号