首页 | 本学科首页   官方微博 | 高级检索  
     


The Fragments of the Photosynthetic Electron Transfer Chain in Model Systems
Authors:A. A. Krasnovsky
Abstract:In this paper the recent research from our laboratory is reviewed. Short fragments of the photochemical electron transfer chain of photosynthesis were reproduced in aqueous detergent solutions or in organic solvents. The function of photosystem I is reproduced in a ternary system of chlorophylls, electron donors (dienols, sulfhydryl compounds, hydrazine, etc.), and electron acceptors (viologens, nicotinamide-adenine dinucleotide [NAD], flavines, etc.). Chlorophyll-photosensitized reduction of viologens in some cases is activated by oxygen at the expense of active reductants formed during the photosensitized oxidation of an initial electron donor (thiourea). Chlorophyll-photosensitized oxidoreduction of cytochromes is activated by flavines, viologens, vitamin K derivatives, and some other redox systems (cofactors of cyclic photophosphorylation). The primary mechanism of the reactions studied depends on the reversible chlorophyll photooxidoreduction. In binary systems, chlorophyll (monomeric or aggregated) and electron donor or electron acceptor, reversible photoreduction or photooxidation is observed. Irreversible bacteriochlorophyll oxidation leads to the formation of chlorophyll and protochlorophyll analogues; irreversible protochlorophyll photoreduction results in chlorophyll-like pigment appearance. The photodisaggregation of chlorophyll was observed. The models of photosystem II studied were the photochemical oxygen evolution in aqueous solutions of electron acceptors (ferric compounds, quinone), photosensitized in the near UV part of the spectrum by inorganic semiconductors (tungsten, titanium, and zinc oxides). All reactions described are based on electron (hydrogen) transfer photosensitized by pigment system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号