首页 | 本学科首页   官方微博 | 高级检索  
     


Novel localization of Rab3D in rat intestinal goblet cells and Brunner's gland acinar cells suggests a role in early Golgi trafficking
Authors:Valentijn Jack A  van Weeren Laura  Ultee Anton  Koster Abraham J
Affiliation:Electron Microscopy Division, Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands. j.a.valentijn@lumc.nl
Abstract:Rab3D is a small GTP-binding protein that associates with secretory granules of endocrine and exocrine cells. The physiological role of Rab3D remains unclear. While it has initially been implicated in the control of regulated exocytosis, recent deletion-mutation studies have suggested that Rab3D is involved in the biogenesis of secretory granules. Here, we report the unexpected finding that Rab3D also associates with early Golgi compartments in intestinal goblet cells and in Brunner's gland acinar cells. Expression of Rab3D in the intestine was demonstrated by SDS-PAGE and Western blot analysis of homogenates prepared from the rat duodenum and colon. Confocal laser scanning microscopy revealed Rab3D immunofluorescence in the Golgi area of goblet cells of the duodenum and colon and in Brunner's gland acinar cells. There was no colocalization between Rab3D and a trans-Golgi network marker, TGN-38. In contrast, Rab3D colocalized partially with a cis-Golgi marker, GM-130, and with a marker of cis-Golgi and coat protein complex I vesicles, beta-COP. Strong colocalization was observed between Rab3D and the lectins Griffonia simplicifolia agglutinin II and soybean agglutinin, which have been described as markers of the medial and cis-Golgi, respectively. Rabphilin, a putative effector of Rab3D, displayed an identical pattern of Golgi localization. Incubation of colon tissue with carbamylcholine or deoxycholate to stimulate exocytosis by goblet cells caused a partial redistribution of Rab3D to the cytoplasm and mucous granule field and a concomitant transformation of the Golgi architecture. Taken together, the present data suggest that Rab3D and rabphilin may regulate the secretory pathway at a much earlier stage than what has hitherto been assumed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号