首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Progressive handgrip exercise: evidence of nitric oxide-dependent vasodilation and blood flow regulation in humans
Authors:Wray D Walter  Witman Melissa A H  Ives Stephen J  McDaniel John  Fjeldstad Anette S  Trinity Joel D  Conklin Jamie D  Supiano Mark A  Richardson Russell S
Institution:Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84148, USA. walter.wray@hsc.utah.edu
Abstract:In the peripheral circulation, nitric oxide (NO) is released in response to shear stress across vascular endothelial cells. We sought to assess the degree to which NO contributes to exercise-induced vasodilation in the brachial artery (BA) and to determine the potential of this approach to noninvasively evaluate NO bioavailability. In eight young (25 ± 1 yr) healthy volunteers, we used ultrasound Doppler to examine BA vasodilation in response to handgrip exercise (4, 8, 12, 16, 20, and 24 kg) with and without endothelial NO synthase blockade intra-arterial N(G)-monomethyl-L-arginine (L-NMMA), 0.48 mg · dl(-1) · min(-1)]. Higher exercise intensities evoked significant BA vasodilation (4-12%) that was positively correlated with the hyperemic stimulus (r = 0.98 ± 0.003, slope = 0.005 ± 0.001). During NO blockade, BA vasodilation at the highest exercise intensity was reduced by ~70% despite similar exercise-induced increases in shear rate (control, +224 ± 30 s(-1); L-NMMA, +259 ± 46 s(-1)). The relationship and slope of BA vasodilation with increasing shear rate was likewise reduced (r = 0.48 ± 0.1, slope = 0.0007 ± 0.0005). We conclude that endothelial NO synthase inhibition with L-NMMA abolishes the relationship between shear stress and BA vasodilation during handgrip exercise, providing clear evidence of NO-dependent vasodilation in this experimental model. These results support this paradigm as a novel and valid approach for a noninvasive assessment of NO-dependent vasodilation in humans.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号