首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Endothelial NOS activity and myocardial oxygen metabolism define the salvageable ischemic time window for ischemic postconditioning
Authors:Cai Ming  Li Yuanjing  Xu Yi  Swartz Harold M  Chen Chwen-Lih  Chen Yeong-Renn  He Guanglong
Institution:Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, The Center for Biomedical Electron Paramagnetic Resonance Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Columbus, USA.
Abstract:Ischemic postconditioning (IPOC) could be ineffective or even detrimental if the index ischemic duration is either too short or too long. The present study is to demonstrate that oxygen supply and metabolism defines a salvageable ischemic time window of IPOC in mice. C57BL/6 mice underwent coronary artery occlusion followed by reperfusion (I/R), with or without IPOC by three cycles of 10 s/10 s R/I. In vivo myocardial tissue oxygenation was monitored with electron paramagnetic resonance oximetry. Regional blood flow (RBF) was measured with a laser Doppler monitor. At the end of 60 min reperfusion, tissue from the risk area was collected, and mitochondrial enzyme activities were assayed. Tissue oximetry demonstrated that I/R induced a reperfusion hyperoxygenation state in the 30- and 45-min but not 15- and 60-min ischemia groups. IPOC attenuated the hyperoxygenation with 45 but not 30 min ischemia. RBF, eNOS phosphorylation, and mitochondrial enzyme activities were suppressed after I/R with different ischemic time, and IPOC afforded protection with 30 and 45 but not 60 min ischemia. Infarct size measurement indicated that IPOC reduced infarction with 30 and 45 min but not 60 min ischemia. Clearly, IPOC protected mouse heart with a defined ischemic time window between 30 and 45 min. This salvageable time window was accompanied by the improvement of RBF due to increased phosphorylated eNOS and the preservation of mitochondrial oxygen consumption due to conserved mitochondrial enzyme activities. Interestingly, this salvageable ischemic time window was mirrored by tissue hyperoxygenation status in the postischemic heart.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号