首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Human ATP:Cob(I)alamin adenosyltransferase and its interaction with methionine synthase reductase
Authors:Leal Nicole A  Olteanu Horatiu  Banerjee Ruma  Bobik Thomas A
Institution:Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, USA.
Abstract:The final step in the conversion of vitamin B(12) into coenzyme B(12) (adenosylcobalamin, AdoCbl) is catalyzed by ATP:cob(I)alamin adenosyltransferase (ATR). Prior studies identified the human ATR and showed that defects in its encoding gene underlie cblB methylmalonic aciduria. Here two common polymorphic variants of the ATR that are found in normal individuals are expressed in Escherichia coli, purified, and partially characterized. The specific activities of ATR variants 239K and 239M were 220 and 190 nmol min(-1) mg(-1), and their K(m) values were 6.3 and 6.9 mum for ATP and 1.2 and 1.6 mum for cob(I)alamin, respectively. These values are similar to those obtained for previously studied bacterial ATRs indicating that both human variants have sufficient activity to mediate AdoCbl synthesis in vivo. Investigations also showed that purified recombinant human methionine synthase reductase (MSR) in combination with purified ATR can convert cob(II)alamin to AdoCbl in vitro. In this system, MSR reduced cob(II)alamin to cob(I)alamin that was adenosylated to AdoCbl by ATR. The optimal stoichiometry for this reaction was approximately 4 MSR/ATR and results indicated that MSR and ATR physically interacted in such a way that the highly reactive reaction intermediate cob(I)alamin] was sequestered. The finding that MSR reduced cob(II)alamin to cob(I)alamin for AdoCbl synthesis (in conjunction with the prior finding that MSR reduced cob(II)alamin for the activation of methionine synthase) indicates a dual physiological role for MSR.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号