首页 | 本学科首页   官方微博 | 高级检索  
     


Hemoglobin: A mechanism for the generation of hydroxyl radicals
Authors:Bruce R. Van Dyke  Paul Saltman
Affiliation:

Department of Biology, University of California, San Diego, La Jolla, CA 92093-0322, USA

Abstract:Oxyhemoglobin (HbO2) reduces Fe(III) NTA aerobically to become methemoglobin (metHb) and Fe(II)NTA. These conditions are favorable for the generation via Fenton chemistry of the hydroxyl radical that was measured by HPLC using salicylate as a probe. The levels of hydroxyl radicals generated are a function of both the percent metHb formed and the chemical nature of the buffer. The rates of formation of both metHb and hydroxyl radicals were dependent upon the concentration of Fe(III)NTA. Of the buffers tested, HEPES was the most effective scavenger of hydroxyl radicals while the other buffers scavenged in the order: HEPES > Tris > MOPS > NaCl ≈ unbuffered. The addition of catalase to remove H202 or bathophenanthroline to chelate Fe(II) inhibited virtually all hydroxyl radical formation. Carbonyl formation from free radical oxidation of amino acids was found to be 0.1 mol/mol of hemoglobin. These experiments demonstrate the ability of hemoglobin to participate directly in the generation of hydroxyl radicals mediated by redox metals, and provide insight into potential oxidative damage from metals released into the blood during some pathologic disorders including iron overload.
Keywords:Hemoglobin   Hydroxyl radical   Free radical scavengers   Carbonyl formation   Redox metals   Free radicals
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号